
Scuola Elementare "Carducci" E0829

Viale Ermelinda Rigon,16 - Genova

RAPPORTO DI DIAGNOSI ENERGETICA FONDO KYOTO - SCUOLA 3

Luglio/2018

COMUNE DI GENOVA STRUTTURA DI STAFF - ENERGY MANAGER

Scuola Elementare "Carducci" E0829

Viale Ermelinda Rigon, 16 - Genova

RAPPORTO DI DIAGNOSI ENERGETICA

FONDO KYOTO - SCUOLA 3 Luglio/2018

COMUNE DI GENOVA STRUTTURA DI STAFF - ENERGY MANAGER

Comune di Genova – Area Tecnica – Struttura di Staff Energy Manager Via Di Francia 1 – 18° Piano Matitone – 16149 – Genova Tel 010 5573560 – 5573855; energymanager@comune.genova.it; www.comune.genova.it; www.comune.genova.it;

DBA Progetti Spa SEDE OPERATIVA Viale Felissent 20/D - 31020 Villorba (TV) SEDE LEGALE: Piazza Roma, 19 - 32045 S. Stefano di Cadore (BL) [Tel: 04220318811 – info@dbagroup.it – www.dbagroup.it]

REGISTRO REVISIONI E PUBBLICAZIONI

Revisione [0]	Data 12/06/2018	Realizzazione Angelo Le Pera		Approvazione Alessandro Bertino	Descriz Prima l	zione Pubblic	azione	2
			Matteo Zanotto					
[1]	26/07/2018	Angelo Le Pera	Francesca	Alessandro	Revisio	ne con	ne ric	hiesta
			Bottega	Bertino	dalla 11/07/	PA 2018	in	data
			Matteo					
			Zanotto					

Nell'ambito del servizio di Audit e Diagnosi Energetica, denominato Fondo Kyoto - Scuola 3, il presente documento si pone l'obiettivo di supportare la redazione del rapporto di diagnosi energetica attraverso la predisposzione di un modello di relazione standardizzato. Qualsiasi parere, suggerimento d'investimento o giudizio su fatti, persone o società contenuti all'interno di questo documento è di esclusiva responsabilità del soggetto terzo che lo utilizza per emanare tale parere, suggerimento o giudizio.

Il Comune di Genova non si assume alcuna responsabilità per le conseguenze che possano scaturire da qualsiasi uso di questo documento da parte di terzi. Questo documento contiene informazioni riservate e di proprietà intellettuale esclusiva. E' vietata la riproduzione totale o parziale, in qualsiasi forma o mezzo e di qualsiasi parte del presente documento senza l'autorizzazione scritta da parte del Comune di Genova.

INDICE

		P.	AGINA
RE	GISTRO RE	VISIONI E PUBBLICAZIONI	3
IN	DICE		I
P.A	AGINA		I
		UMMARY	
1	INTROD	PUZIONE	3
	1.1 PR	EMESSA	3
		OPO DELLA DIAGNOSI ENERGETICA	
		FERIMENTO E CONTATTI AUDITOR E PERSONALE COINVOLTO	
		ENTIFICAZIONE DELL'EDIFICIO.	
		ETODOLOGIA DI LAVORO	
	1.6 STF	RUTTURA DEL REPORT	8
2	DATI DE	ELL'EDIFICIO	9
	2.1 INF	FORMAZIONI SUL SITO	9
	2.2 INC	QUADRAMENTO TERRITORIALE, SOCIO-ECONOMICO E DESTINAZIONE D'USO	9
		RIFICA DEI VINCOLI INTERFERENTI SULLE PARTI DELL'IMMOBILE INTERESSATE DAGLI 'INTERVENTI	
	2.4 Mo	ODALITÀ DI GESTIONE E MANUTENZIONE DI EDIFICI ED IMPIANTO	11
3	DATI CI	IMATICI	13
•			
	-	ATI CLIMATICI DI RIFERIMENTO	_
		ATI CLIMATICI REALI	
		IALISI DELL'ANDAMENTO DEI DATI CLIMATICI E PROFILI ANNUALI DEI GRADI GIORNO	
4	AUDIT E	EDIFICIO E IMPIANTI ELETTRICI E MECCANICI	16
	4.1 DE	SCRIZIONE E PRESTAZIONI ENERGETICHE DELL'INVOLUCRO EDILIZIO	16
		Involucro opaco	
		Involucro trasparente	
	4.2 DE	SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI RISCALDAMENTO/ CLIMATIZZAZIONE INVERNALE	19
	4.2.1	Sottosistema di emissione	19
	4.2.2	Sottosistema di regolazione	20
		Sottosistema di distribuzione	
		Sottosistema di generazione	
		SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO PRODUZIONE ACQUA CALDA SANITARIA	
		SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI RAFFRESCAMENTO/CLIMATIZZAZIONE ESTIVA	
		SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI VENTILAZIONE MECCANICA	
		SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO ELETTRICO E PRINCIPALI UTENZE ELETTRICHE	
		SCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO ILLUMINAZIONE	
		SCRIZIONE E PRESTAZIONI ENERGETICHE DI IMPIANTI DI PRODUZIONE ENERGIA ELETTRICA O COGENERAZIONE	
5	CONSU	MI RILEVATI	29
	5.1 Co	ONSUMI ENERGETICI STORICI PER CIASCUN VETTORE E CONNESSIONE ALLE RETI GAS NATURALE ED ELETTRICA	29
	5.1.1	Energia termica	29
	5.1.2	Energia elettrica	32
	5.2 INC	DICATORI DI PERFORMANCE ENERGETICI ED AMBIENTALI	37
6	MODEL	LO DEL FABBISOGNO ENERGETICO	41
	6.1 M	ETODOLOGIA DI CALCOLO ADOTTATA E VALIDAZIONE DEI MODELLI DI CALCOLO	41
		Validazione del modello termico	
	6.1.2	Validazione del modello elettrico	43
	6.2 FAI	BBISOGNI ENERGETICI	43
	6.3 PR	OFILI ENERGETICI MENSILI	45
7	ANALISI	I DEI COSTI PRE-INTREVENTO	47

E0829 - Scuola elementare "Carducci"

	7.1	COSTI RELATIVI ALLA FORNITURA DEI VETTORI ENERGETICI	47
	7.1.1	Vettore termico	47
	7.1.2		
	7.2	TARIFFE E PREZZI VETTORI ENERGETICI UTILIZZATI NELL'ANALISI	
	7.3	COSTI DI GESTIONE E MANUTENZIONE DI EDIFICIO ED IMPIANTI	
	7.4	BASELINE DEI COSTI	53
8	IDEN	TIFICAZIONE DELLE MISURE DI EFFICIENZA ENERGETICA	55
	8.1	DESCRIZIONE, FATTIBILITÀ E PRESTAZIONI DEI SINGOLI INTERVENTI MIGLIORATIVI	
	8.1.1		
	8.1.2	P	
	8.1.3	Impianto di illuminazione ed impianto elettrico	58
9	VALL	JTAZIONE ECONOMICO-FINANZIARIA	60
		Analisi dei Costi dei singoli interventi migliorativi considerati fattibili	
	9.2	Analisi di Convenienza dei singoli interventi migliorativi considerati fattibili	
	9.3	IDENTIFICAZIONE DELLE SOLUZIONI INTEGRATE D'INTERVENTO E SCENARI D'INVESTIMENTO	
	9.3.1		
	9.3.2	Scenario 2: EEM1+EEM2+EEM3	77
10	CON	CLUSIONI	84
	10.1	RIASSUNTO DEGLI INDICI DI PERFORMANCE ENERGETICA	84
	10.2	RIASSUNTO DEGLI SCENARI DI INVESTIMENTO E DEI PRINCIPALI RISULTATI	
	10.3	CONCLUSIONI E COMMENTI	84
ΑI	LLEGATO	A – ELENCO DOCUMENTAZIONE FORNITA DALLA COMMITTENZA	A
ΑI	LLEGATO	B – ELABORATI	A
ΑI	LLEGATO	C – REPORT DI INDAGINE TERMOGRAFICA	1
ΑI	LLEGATO	D – REPORT RELATIVI AD ALTRE PROVE DIAGNOSTICHE STRUMENTALI	1
		E – RELAZIONE DI DETTAGLIO DEI CALCOLI	
ΑI	LLEGATO	F – CERTIFICATO CTI SOFTWARE	1
ΑI	LLEGATO	G – ATTESTATO DI PRESTAZIONE ENERGETICA	1
ΑI	LLEGATO	H – BOZZA DI APE SCENARI	1
ΑI	LLEGATO) I – DATI CLIMATICI	1
ΑI	LLEGATO) J – SCHEDE DI AUDIT	1
ΑI	LLEGATO) K – SCHEDE ORE	1
		L – PIANO ECONOMICO FINANZIARIO SCENARI	
		M – REPORT DI BENCHMARK	
		N – CD-ROM	

EXECUTIVE SUMMARY

Caratteristiche dell'edificio oggetto della DE

Tabella 0.1 - Tabella riepilogativa dei dati dell'edificio

PARAMENTO	U.M.	VALORE
Anno di costruzione edificio	-	1850
Anno di ristrutturazione		-
Zona climatica		D
Destinazione d'uso		E.7 Edificio scolastico
Superficie utile riscaldata	[m²]	2.257,63
Superficie disperdente (S)	[m²]	4.897,3
Volume lordo riscaldato (V)	[m³]	10.416,72
Rapporto S/V	[1/m]	0,47
Superficie netta aree interne (scaldate e non scaldate)	[m ²]	2.802,13
Superficie lorda aree interne (scaldate e non scaldate)	[m²]	3.680
Superficie lorda aree esterne	[m²]	293,18
Superficie lorda complessiva (aree interne ed esterne)	[m²]	3.973,16
Tipologia generatore riscaldamento		Caldaia a condensazione + Caldaia a gas
Potenza totale impianto riscaldamento	[kW]	275,8
Potenza totale impianto raffrescamento	[kW]	12,40
Tipo di combustibile	-	Gas metano
Tipologia generatore Acqua Calda sanitaria (ACS)	-	Boiler elettrici
Emissioni CO2 di riferimento (1)	[t/anno]	51,572
Consumo di riferimento Gas Metano (1)	[kWh,th/anno]	103.215
Spesa annuale Gas Metano (1)	[€/anno]	8.396
Consumo di riferimento energia elettrica (1)	[kWh,el/anno]	65.787
Spesa annuale energia elettrica (1)	[€/anno]	11.865

Nota (1): Valori di Baseline

Descrizione delle Misure di efficienza energetiche proposte:

EEM 1: Installazione termovalvole

EEM 2: Sostituzione corpi illuminanti

EEM 3: Cappotto termico

SCN1: EEM1+EEM2

SCN2:EEM1+EEM2+EEM3

Tabella 0.2 – Sintesi dei risultati della valutazione economico-finanziaria delle misure di efficienza energetiche proposte e degli scenari ottimali, caso con incentivi

	CON INCENTIVI													
	%∆ _E	%∆ _{CO2}	ΔC_E	ΔC_{MO}	ΔC_{MS}	l _o	TRS	TRA		VAN	TIR	IP	DSCR	LLCR
	[%]	[%]	[€/anno]	[€/anno]	[€/anno]	[€]	[anni]	[anni]	[anni]	[€]	[%]	[-]		
EEM 1	8%	8%	1.675,5	2.002,2	-	6.263,3	1,8	1,9	15,0	28.302,4	0,516	4,519		
EEM 2	9%	9%	1.839,9	500,5	-	34.524,0	7,9	10,9	15,0	4.291,1	0,065	0,124		
EEM 3	26%	26%	5.254,3	-	-	185.832,0	20,9	34,8	30,0	-26.333,0	0,022	-0,142		
SCN 1	17,19%	17%	3.483,8	2.002,2	-	40.787,3	6,5	8,0	15,0	7.553,0	0,086	0,203	1,278	1,014
SCN 2	33,38%	33%	6.764,9	2.502,7	-	226.619,3	17,8	46,5	25,0	-29.276,0	0,018	-0,131	0,793	1,213

Figura 0.1 – Scenario 1: analisi finanziaria

Figura 0.2 – Scenario 2: analisi finanziaria

Dalle analisi fatte sull'edificio è emerso che entrambi lo Scenario 1 risulta conveniente dal punto di vista economico finanziario.

Inoltre, il secondo scenario, tuttavia, prevede interventi sull'involucro edilizio e in questo caso la classe energetica dell'edificio beneficia di due classe in più di prestazione energetica.

1 INTRODUZIONE

1.1 PREMESSA

Il Comune di Genova, in attuazione alle politiche di miglioramento dell'efficienza energetica degli edifici pubblici di sua proprietà, ha individuato negli edifici scolastici, la possibilità di intervenire, ai fini di ridurre il gli attuali consumi, in quanto tali edifici risultano essere particolarmente energivori.

Con DGC n. 225 del 17/09/2015 l'amministrazione ha pertanto partecipato al bando ministeriale denominato "Fondo Kyoto Scuole 3" attraverso il quale, con decreto del Ministero dell'Ambiente e della Tutela del Territorio e del Mare del 26 Agosto 2016 n.197/CLE, è stato riconosciuto al Comune di Genova un finanziamento a tasso agevolato pari a € 1.127.506,00 per l'elaborazione delle **Diagnosi energetiche (DE)** di 204 edifici scolastici necessarie per la programmazione futura degli interventi di riqualificazione energetica degli edifici stessi.

Figura 1.1 - Vista della facciata Nord-Ovest

Nell'attività di realizzazione delle DE si è fatto riferimento alla normativa tecnica ed alla legislazione riportata al Capitolo 3 del Capitolato Tecnico per la "Procedura aperta per l'affidamento del servizio di audit e diagnosi energetiche relative agli edifici scolastici di proprietà del comune di Genova finanziate ai sensi dell'ex art.9 del d.l. 91/2014 "interventi urgenti per l'efficientamento energetico degli edifici scolastici e universitari pubblici", (fondo Kyoto) - lotti 1, 2, 3, 4, 5, 6, 7, 8 e 9"

1.2 SCOPO DELLA DIAGNOSI ENERGETICA

Per DE del sistema edificio-impianto s'intende pertanto una procedura sistematica finalizzata alla conoscenza degli usi finali di energia con l'individuazione e l'analisi delle eventuali inefficienze o criticità energetiche di un edificio e degli impianti presenti al suo interno.

La presente DE si inserisce in questo contesto ed analizza, pertanto, le possibili soluzioni tecniche e contrattuali, che potrebbero portare alla realizzazione di interventi di miglioramento dell'efficienza energetica volti ad una riduzione dei consumi e ad un conseguente abbattimento delle emissioni di CO₂

La DE è, inoltre, il principale strumento per la valutazione della fattibilità tecnica ed economica di misure di miglioramento dell'efficienza energetica (Energy Efficiency Measures - EEM) negli edifici e rappresenta un valido punto di partenza per la realizzazione di contratti di prestazione energetica (Energy Performance Contract – EPC).

Scopo della DE è quindi lefinizione di due scenari ottimali a partire dalla combinazione delle singole EEM proposte al fine di conseguire un miglioramento del paramento di efficienza energetica dell'edificio superiore a due classi e tempi di ritorno inferiori uguale rispettivamente a 25 o a 15 anni.

1.3 RIFERIMENTO E CONTATTI AUDITOR E PERSONALE COINVOLTO

La presente DE è stata eseguita dalla DBA Progetti Spa, il cui responsabile per il processo di audit è l'ing. Alessandro Bertino, soggetto certificato Esperto in Gestione dell'Energia (EGE) ai sensi della norma UNI CEI 11339.

In Tabella 1.1 sono riportati i nominativi di tutti i soggetti coinvolti nelle varie fasi di svolgimento della DF.

Tabella 1.1 – Soggetti coinvolti nella realizzazione del processo di Audit

NOME E COGNOME	RUOLO	ATTIVITÀ SVOLTA
Maria Giovanna Passaghe	Impiegato tecnico	Sopralluogo in sito, Elaborazione dati e creazione del modello energetico
Gianluca Loddi	Impiegato tecnico	Sopralluogo in sito, Elaborazione dati diagnosi energetica
Angela Sposato	Impiegato tecnico	Gestione rapporti con committenza, Elaborazione dati diagnosi energetica
Francesca Bottega	Responsabile involucro	Supervisione attività e report di diagnosi energetica
Matteo Zanotto	Responsabile impianti	Supervisione attività e report di diagnosi energetica
Alessandro Bertino	EGE	Supervisione attività e approvazione report di diagnosi energetica

1.4 IDENTIFICAZIONE DELL'EDIFICIO

L'immobile oggetto della DE, catastalmente individuato al NCEU SEP F. 55 Mapp. 1244 Sub. 0 è sito nel Comune di Genova e più precisamente nella zona di Sestri Ponente.

L'edificio è di proprietà del Comune di Genova ed è attualmente adibito a scuola primaria.

Nella seguente tabella sono riportate le principali caratteristiche geometriche ed impiantistiche dell'edificio.

Figura 1.2 – Ubicazione dell'edificio

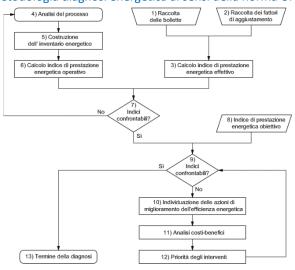
Tabella 1.2 - Tabella riepilogativa dei dati dell'edificio

PARAMENTO	U.M.	VALORE
Anno di costruzione edificio		1850
Anno di ristrutturazione		-
Zona climatica		D
Destinazione d'uso		E.7 Edificio scolastico
Superficie utile riscaldata	[m²]	2.257,63
Superficie disperdente (S)	[m²]	4.897,3
Volume lordo riscaldato (V)	[m³]	10.416,72
Rapporto S/V	[1/m]	0,47
Superficie netta aree interne (scaldate e non scaldate)	[m²]	2.802,13
Superficie lorda aree interne (scaldate e non scaldate)	[m²]	3.680
Superficie lorda aree esterne	[m²]	293,18
Superficie lorda complessiva (aree interne ed esterne)	[m²]	3.973,16
Tipologia generatore riscaldamento		Caldaia a condensazione + Caldaia a gas
Potenza totale impianto riscaldamento	[kW]	274
Potenza totale impianto raffrescamento	[kW]	5,5
Tipo di combustibile		Gas metano
Tipologia generatore Acqua Calda sanitaria (ACS)	-	Boiler elettrici
Emissioni CO2 di riferimento (2)	[t/anno]	51,572
Consumo di riferimento Gas Metano (2)	[kWh,th/anno]	103.215

Spesa annuale Gas Metano (2)	[€/anno]	8.396
Consumo di riferimento energia elettrica (2)	[kWh,el/anno]	65.787
Spesa annuale energia elettrica (2)	[€/anno]	11.865

Nota (2): Valori di Baseline

1.5 METODOLOGIA DI LAVORO


La procedura di realizzazione della DE si è sviluppata nelle seguenti fasi operative:

- a) Acquisizione della documentazione utile, fornita dalla PA, come riportato all'Allegato A Elenco documentazione fornita dalla committenza;
- b) Analisi del quadro normativo di riferimento, incluso la verifica dei vincoli ambientali, storici, archeologici e paesaggistici interferenti sull'immobile interessato dall'intervento;
- Visita agli edifici, effettuata in data 15/12/2017 con verifica degli elaborati forniti e rilievo dei dati relativi alle caratteristiche degli elementi disperdenti ed impiantistici costituenti il sistema edificio-impianto;
- d) Visita alla centrale termica e/o frigorifera, con il supporto del personale incaricato della conduzione e manutenzione degli impianti e rilevamento dei dati utili;
- e) Preparazione e compilazione delle schede di Audit previste per la diagnosi di livello II di cui all'appendice A delle LGEE Linee Guida per l'Efficienza Energetica negli Edifici sett. 2013 elaborato da AiCARR per Agesi, Assistal, Assopetroli e Assoenergia, e riportate all'Allegato J Schede di audit;
- f) Elaborazione del comportamento termico ed elettrico dell'edificio, realizzata utilizzando il software commerciale Edilclima EC700 in possesso di certificato di conformità rilasciato dal Comitato Termotecnico Italiano (CTI) n.73 ai sensi del D.lgs. 192/05 e s.m.i. e riportato all'Allegato F Certificato CTI Software:
- Analisi dei profili annuali di consumi e costi dei servizi energetici reali dell'edificio, comprensivi della fornitura dei vettori energetici sia elettrici che di gas e degli oneri di O&M, relativamente alle annualità 2014-2015-2016;
- h) Analisi dei dati climatici reali del sito ove è ubicato l'edificio con conseguente calcolo dei Gradi Giorno reali (GG_{real}), utilizzando le temperature esterne rilevate dalla stazione meteo Genova-Pegli e riportati all'Allegato I Dati climatici;
- i) Individuazione della "baseline termica" di riferimento (e relative emissioni di CO₂) tramite opportuna ripartizione del consumo di combustibile tra le varie utenze a servizio dell'edificio e destagionalizzazione dello stesso, utilizzando i relativi GG reali (GG_{real}), e conseguente normalizzazione secondo i GG di riferimento (GG_{rif});
- j) Individuazione della "baseline elettrica" di riferimento (e relative emissioni di CO₂) calcolata sulla media aritmetica dei valori relativi ai consumi elettrici reali per tre le annualità 2014, 2015, 2016;
- k) Validazione del modello elaborato mediante il confronto con le baseline energetiche, al fine di ottenere uno scostamento inferiore al 5%;
- I) Analisi delle possibili EEM necessarie per la riqualificazione energetica del sistema edificioimpianto analizzando gli aspetti tecnici, energetici, ed ambientali.
- m) Simulazione del comportamento energetico dell'edificio a seguito dell'attuazione delle varie EEM proposte singolarmente, ed individuazione della nuova classe energetica raggiungibile;
- n) Definizione di due scenari ottimali a partire dalla combinazione delle singole EEM proposte al fine di conseguire un miglioramento del paramento di efficienza energetica dell'edificio superiore a due classi energetiche e tempi di ritorno inferiori uguale rispettivamente a 25 e a 15 anni.
- Analisi costi-benefici e di redditività finanziaria derivanti dalla realizzazione delle EEM previste singolarmente, con riferimento ai principali indicatori finanziari ed ai possibili sistemi di incentivazione;

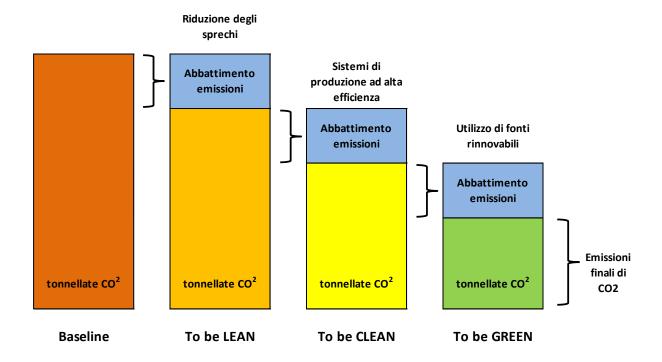

- Valutazione economico-finanziaria dei due scenari ottimali previsti, a partire dal "baseline di costi" e con riferimento ai principali indicatori finanziari e di sostenibilità finanziari ed ai possibili sistemi di incentivazione;
- q) Identificazione dell'eventuale canone applicabile nel caso di attuazione dello scenario ottimale attraverso un Energy Performance Contract, con lo scopo di analizzare il possibile interesse nella realizzazione degli interventi studiati, tramite l'intervento di una ESCo;
- r) Realizzazione di una relazione tecnica descrittiva di dettaglio dell'analisi effettuata (Rapporto di DE):
- s) Realizzazione di un report dei Benchmark.

Figura 1.3 – Schema metodologia diagnosi energetica ai sensi della norma UNI CEI 16247

Per la definizione di soluzioni integrate, la priorità con cui sono state analizzate la combinazione di possibili EEM è quella definita dal modello di gerarchia energetica riportato in Figura 1.4

Figura 1.4 - Principio della Gerarchia Energetica

Secondo tale modello possono essere definite delle strategie di intervento al fine di conseguire un efficace riduzione dei consumi energetici e conseguente abbattimento delle emissioni di CO₂, secondo tre livelli consequenziali:

- To be Lean: Utilizzo di EEM che limitino gli sprechi ed ottimizzino il funzionamento del sistema edificio-impianto (es: illuminazione a led, coibentazione strutture, efficientamento serramenti, termoregolazione, variazioni nelle modalità di utilizzo, ecc.);
- To be Clean: Aumento dell'efficienza dei sistemi di produzione in loco dell'energia tramite lo sfruttamento di tecnologie ad alto rendimento (es: sostituzione generatore di calore con uno ad alta efficienza, chiller ad alta efficienza, teleriscaldamento, teleraffrescamento, cogenerazione);
- To be Green: Produzione di energia da fonti rinnovabili (es: pompe di calore, fotovoltaico, ecc.).

Secondo questo modello di gerarchica energetica non è raccomandato riqualificare gli impianti di generazione della climatizzazione e gli impianti rinnovabili se non a partire da rinnovate e ridotte condizioni del fabbisogno energetico, conseguenti all'adozione di EEM preliminari atte a ridurre il fabbisogno energetica primario.

Per tanto, nel caso di soluzioni integrate, dapprima si è valutata la fattibilità di ridurre gli sprechi mediante misure sull'involucro e sulla domande d'utenza (anche relativamente ai sistemi di emissione, regolazione, distribuzione, accumulo), partendo dal baseline e a approdando a un nuovo valore di baseline ridotto, ("to Be Lean"). In seguito, da questo valore ridotto di baseline si è valutato il dimensionamento delle apparecchiature e il risparmio conseguibile dapprima dalla riqualificazioni degli impianti di generazione per la climatizzazione e, dopo, dall'installazione di tecnologie di generazione da fonti rinnovabili.

Una volta esaminate le possibili EEM si è realizzata una analisi economica delle stesse, ponendo particolare attenzione nella valutazione dei possibili sistemi incentivanti applicabili (Conto Termico, Titoli di Efficienza Energetica, ecc) individuando i principali indicatori economici d'investimento di seguito elencati:

- TRS (Tempo di rientro semplice);
- TRA (Tempo di rientro attualizzato);
- VAN (Valore attuale netto);
- TIR (Tasso interno di rendimento);
- IP (indice di profitto).

Inoltre per i soli scenari ottimali, si è provveduto alla formulazione del Piano Economico-Finanziario indicativo (PEF) ed alla valutazione della sostenibilità finanziaria, utilizzando i seguenti indicatori di bancabilità:

- DSCR (Debt Service Cover Ratio) medio di periodo;
- LLCR (Loan Life Cover Ratio) medio di periodo.

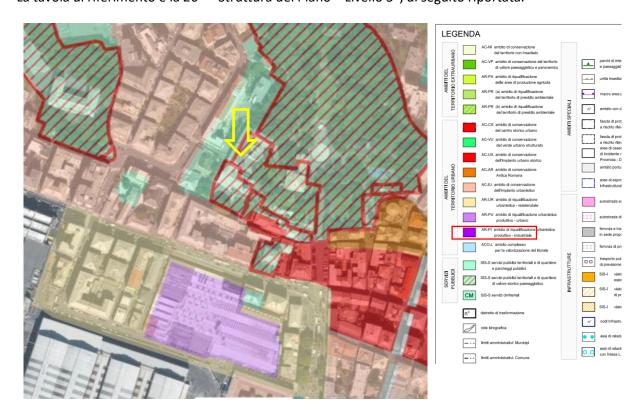
La definizione di bancabilità delle EEM viene associata agli scenari che realizzino valori positivi di DSCR nell'intorno di 1,3 e valori positivi di LLLCR maggiori di 1.

Si è poi individuata una possibile tipologia di contratto che potesse rendere realizzabili le EEM identificate, ipotizzando la partecipazione di ESCo attraverso l'utilizzo di contratti EPC.

Dal punto di vista dell'individuazione dei capitali per la realizzazione delle misure, si è invece posta l'attenzione sulle varie alternative finanziarie, individuando nel **Finanziamento Tramite Terzi (FTT)** una valida opportunità, nel caso in cui la PA non abbia le risorse necessarie a sostenere gli investimenti per la riqualificazione energetica dell'edificio.

1.6 STRUTTURA DEL REPORT

Il presente rapporto di DE, con riferimento all'Appendice J della norma UNI CEI EN 16247-2:2014, è stato articolato nelle seguenti parti:


- Una prima parte nella quale sono descritti lo scopo ed i confini della DE e le metodologie di analisi adottate;
- Una seconda parte in cui sono riportate le informazioni dell'edificio rilevate in sede di sopralluogo
 e le valutazioni effettuate al fine di identificare le caratteristiche tecniche dei componenti del
 sistema edificio-impianto.
- Una terza parte contenente l'analisi dei consumi storici dell'edificio oggetto della DE, con la conseguente identificazione degli indici di prestazione energetica effettivi;
- Una quarta parte relativa alla definizione del modello energetico, e del procedimento di convalida dello stesso, al fine di renderlo conforme a quanto identificato nell'analisi dei consumi storici;
- Una quinta parte in cui sono descritte le caratteristiche tecniche ed i costi delle EEM proposte e gli scenari ottimali, individuabili tramite la valutazione dei risultati dell'analisi economicofinanziaria.
- Una parte conclusiva contenente i risultati dell'analisi ed i suggerimenti dell'Auditor per l'attuazione degli scenari proposti da parte della PA, definendo le opportune priorità di intervento.

2 DATI DELL'EDIFICIO

2.1 INFORMAZIONI SUL SITO

Lo strumento urbanistico vigente, il P.U.C approvato con DD n° 2015/118.0.0./18 con entrata in vigore il 3/12/2015, classifica l'edificio oggetto della DE in zona F-Servizi, ed in particolare nella sottozona FF, la cui funzione caratterizzante é quella dei servizi pubblici di valore storico paesaggistico, disciplinata dagli articoli che vanno dall'FF1 all'FF9 riportati nelle Norme di Attuazione di Piano.
La tavola di riferimento è la 26 – "Struttura del Piano – Livello 3", di seguito riportata.

2.2 INQUADRAMENTO TERRITORIALE, SOCIO-ECONOMICO E DESTINAZIONE D'USO

L'edificio ove è ubicata la Scuola Elementare è stato costruito a fine '800 ed attualmente ricade nella destinazione d'uso E.7.

Ai fini dell'esecuzione degli interventi di efficientamento energetico non sarà comunque necessario apportare varianti agli strumenti urbanistici né provvedere ad espropri o a variazioni di proprietà.

L'ipotesi di intervenire al fine di migliorare l'efficienza energetica del fabbricato è innanzitutto volta ad una diminuzione delle emissioni di CO2, la quale rientra negli obiettivi prefissati dal Comune di Genova all'interno del SEAP (Sustainable Energy Action Plan), ma può anche essere considerata di notevole interesse socio-culturale al fine della sensibilizzazione e dell'informazione dei ragazzi verso tematiche di interesse ambientale ed energetico.

L'edificio ospitante il complesso scolastico oggetto della DE è costituito complessivamente da 4 piani fuori terra, nei quali si sviluppano i vari ambienti a servizio dell'attività didattica. Al piano terra sono presenti palestra e le aule; al piano secondo ammezzato gli uffici; al piano terzo il teatro e negli altri piani le aule scolastiche ed i laboratori di informatica.

Nella Tabella 2.1 sono riassunte le destinazioni d'uso delle varie aree e le relative superfici.

Le planimetrie utilizzate nella valutazione sono riportate in Allegato B – Elaborati.

Figura 2.1 - Vista satellitare dell'edificio (Fonte: Google Maps)

Tabella 2.1 - Suddivisione in piani dell'edificio

PIANO	UTILIZZO	U.M.	SUPERFICIE LORDA COMPLESSIVA ⁽²⁾	SUPERFICIE UTILE RISCALDATA ⁽³⁾	SUPERFICIE UTILE RAFFRESCATA ⁽³⁾
Interrato	Centrale termica, Stanza pompe	[m ²]	153,25	0	-
Terra	Ingresso, Palestra, aule	[m²]	916,18	649,8	-
Primo ammezzato	Aule	[m²]	211.,02	120,09	-
Primo	Aule Laboratori	[m²]	811,26	519,04	-
Secondo ammezzato	Uffici	[m²]	206,30	110,09	
Secondo	Aule	[m²]	654,88	425,59	
Terzo	Aule, Teatro	[m²]	727,18	463,33	212,40
TOTALE		[m²]	3.680	2.257,63	212,40

Nota (3): Superficie lorda comprensiva delle zone interne climatizzate e non climatizzate, valutate a partire dalle planimetrie progettuali, opportunamente verificate in fase di sopralluogo

Nota (4): Superficie utile valutata ai fini della creazione del modello energetico

2.3 VERIFICA DEI VINCOLI INTERFERENTI SULLE PARTI DELL'IMMOBILE INTERESSATE DAGLI 'INTERVENTI

L'edificio è interessato da vincolo architettonico di cui all'art. 12 del d. lgs. 42/2004.

Figura 2.2 - Particolare estratto dalla carta dei vincoli

MISURA DI EFFICIENZA ENERGETICA	VINCOLO INTERESSATO	VALUTAZIONE INTERFERENZA (5)	MISURA DI TUTELA DA ADOTTARE
EEM 1: Installazione termovalvole	Nessun Vincolo		
EEM 2: Sostituzione corpi illuminanti	Nessun Vincolo		
EEM 3: Cappotto termico	Vincolo Architettonico		Previo parere della a Soprintendenza per i beni architettonici e paesaggistici

Nota (5): Legenda livelli di interferenza:

2.4 MODALITÀ DI GESTIONE E MANUTENZIONE DI EDIFICI ED IMPIANTO

Durante la fase di sopralluogo è stato possibile rilevare gli orari di effettivo funzionamento dell'edificio, intesi come gli orari di espletamento delle lezioni e gli orari di effettiva presenza del personale all'interno dell'edificio scolastico.

Gli orari di effettivo utilizzo dell'edificio sono stati ricavati tramite interviste agli operatori presenti, mentre i periodi di attivazione e spegnimento degli impianti sono stati rilevati, quando possibile, dal display del sistema di gestione degli stessi presente in centrale termica.

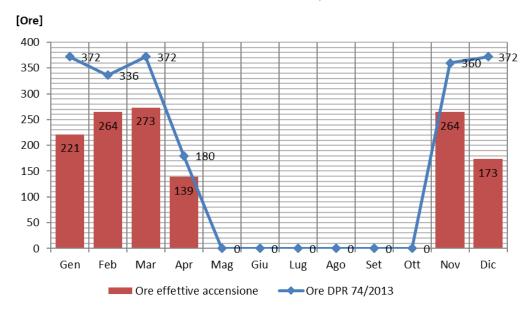

Nella Tabella 2.2 sono pertanto riportati gli orari di funzionamento dell'edificio e gli orari di funzionamento degli impianti termici.

Tabella 2.2 – Orari di funzionamento dell'edificio e orari di funzionamento degli impianti termici.

PERIODO	GIORNI SETTIMENALI	ORARIO FUNZIONAMENTO EDIFICIO	ORARIO FUNZIONAMENTO IMPIANTO	
Dal 1 Novembre al 15 Aprile [dal lunedì al venerdì]		07.30 – 18.00	04:00 - 17.30	
	[sabato e domenica]	Chiuso (a meno di aperture straordinarie)	spento	
dal 1 Settembre al 30 Ottobre e dal 16 Aprile al 15 Luglio	[dal lunedì al venerdì]	07.30 – 18.00	spento	

Figura 2.3 – Andamento mensile delle ore effettive di utilizzo dell'impianto termico

Dall'analisi effettuata è emerso che gli orari di funzionamento degli impianti sono correlati agli orari di espletamento delle lezioni, poiché questi vengono spenti al concludersi delle attività didattiche; nella programmazione degli impianti non è invece considerata la presenza di operatori all'interno della struttura oltre l'orario di lezione per cui gli impianti si spengono prima della totale assenza di persone all'interno del fabbricato.

Dal punto di vista manutentivo, attualmente le condizioni di Conduzione e Manutenzione (O&M) degli impianti a servizio dell'edificio scolastico oggetto della DE sono definite dal contratto Servizio Integrato Energia 3 che prevede l'affidamento ad un unico Gestore, del Servizio Energia, ovvero tutte le attività di gestione, conduzione e manutenzione degli impianti termici, compresa l'assunzione del ruolo di Terzo Responsabile, e di tutti gli impianti ad essi connessi. Tale contratto è stato stipulato a partire da Ottobre 2016 ed ha una durata di 6 anni.

Precedentemente era presente un altro contratto di "fornitura del servizio energia e manutenzione degli impianti termici e di condizionamento negli edifici di proprietà o di competenza del comune di Genova", di durata triennale.

3 DATI CLIMATICI

3.1 DATI CLIMATICI DI RIFERIMENTO

L'edificio oggetto della DE è ubicato nel Comune di Genova, il quale ricade nella zona climatica D, a cui corrispondono 1435 **Gradi Giorno(GG)** (D.P.R. 412/93 - allegato A) ed una stagione di funzionamento degli impianti di riscaldamento compresa tra il 1 Novembre e il 15 Aprile con un periodo di accensione consentito degli impianti di 12 ore al giorno (DPR 74/2013).

Le medie mensili delle temperature esterne medie giornaliere caratteristiche del Comune, così come definite dalla norma UNI 10349:2016, sono riportate nella Tabella 3.1.

Tabella 3.1 – Temperature esterne giornaliere medie mensili [°C] (UNI 10349:2016)

GEN	FEB	MAR	APR	MAG	GIU	LUGL	AGO	SET	ОТТ	NOV	DIC
10,4	10,5	11,1	15,3	18,7	22,4	24,6	23,6	22,2	18,2	13,3	10,0

Tali temperature sopra indicate sono quelle utilizzate per la creazione del modello energetico termico, a cui corrispondono 1421 GG di riferimento, valutati in condizioni standard di utilizzo dell'edificio, come la sommatoria, estesa a tutti i giorni del periodo annuale di riscaldamento compreso tra il 1 Novembre e il 15 Aprile, delle sole differenze positive giornaliere tra la temperatura interna di 20°C e quella esterna giornaliera media mensile riportata in Tabella 3.1.

Considerando che il profilo di utilizzo degli impianti di riscaldamento prevede alcuni giorni di mancata accensione dell'impianto, come riportato nella Tabella 2.2, i GG sono stati ricalcolati in funzione del numero di giorni effettivi di accensione dell'impianto termico, pertanto si è ottenuto un valore di 867 GG calcolati su 103 giorni effettivi di utilizzo dell'impianto di riscaldamento.

Tali GG sono valutati come la sommatoria estesa ai soli giorni di effettivo utilizzo degli impianti di riscaldamento nel periodo annuale di riscaldamento compreso tra il 1 Novembre e il 15 Aprile, delle sole differenze positive giornaliere tra la temperatura interna di 20°C e quella esterna giornaliera media mensile riportata in Tabella 3.1.

I GG così calcolati definiscono i GGrif ai fini del processo di normalizzazione di cui al capitolo 5.1.1.

Tabella 3.2 – Profili mensili dei GGrif

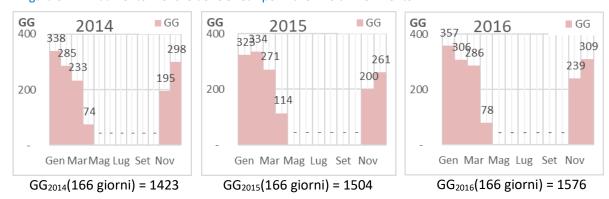
	GIORNI MENSILI	TEMPERATURA ESTERNA UNI 10349:2016	GIORNI RISCALDAMENTO	GG	GIORNI DI UTILIZZO	GIORNI RISCALDAMENTO EFFETTIVI	GG _{rif}	PROFILO DI INCIDENZA
Mese		[°C]	[g/m]		[g/m]	[g/m]		
Gennaio	31	10,4	31	298	20	17	163	19%
Febbraio	28	10,5	28	266	20	20	193	22%
Marzo	31	11,1	31	276	21	21	187	22%
Aprile	30	15,3	15	71	20	11	50	6%
Maggio	31	18,7	-	-	21	0	0	0
Giugno	30	22,4	-	-	20	0	0	0
Luglio	31	24,6	-	-	10	0	0	0
Agosto	31	23,6	-	-	-	0	0	0
Settembre	30	22,2	-	-	20	0	0	0
Ottobre	31	18,2	-	-	21	0	0	0
Novembre	30	13,3	30	201	20	20	136	16%
Dicembre	31	10	31	310	15	14	137	16%
TOTALE	365	16,7	166	1421	208	103	867	100%

3.2 DATI CLIMATICI REALI

Ai fini della realizzazione dell'analisi energetica si è resa necessaria la definizione delle condizioni climatiche reali, ovvero dei GG calcolati in funzione della temperatura esterna media oraria del sito effettivamente rilevata, con lo scopo di creare una normalizzazione dei consumi in funzione delle caratteristiche climatiche della zona.

I dati climatici utilizzati sono stati rilevati dalla centralina meteo climatica di Genova Pegli, indicata in rosso nella Figura 3.1

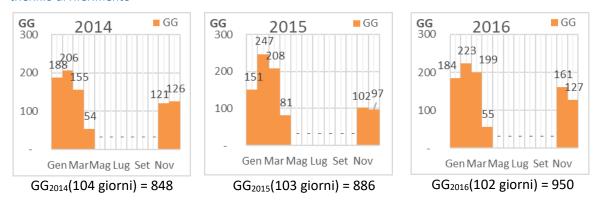
Si è decido di utilizzare come riferimento tale centraline in quanto è risultata essere quella più vicina al sito oggetto di studio.



3.3 ANALISI DELL'ANDAMENTO DEI DATI CLIMATICI E PROFILI ANNUALI DEI GRADI GIORNO

Di seguito si riportano i valori mensili dei GG reali, calcolati in funzione delle temperature esterne medie orarie per il triennio di riferimento (2014 - 2015 – 2016), valutati come la sommatoria, estesa a tutti i giorni del periodo annuale di riscaldamento compreso tra il 1 Novembre e il 15 Aprile, delle sole differenze positive giornaliere tra la temperatura interna di 20°C e quella esterna giornaliera media mensile calcolata in funzione delle temperature orarie rilevate dalla centralina meteoclimatica.

Figura 3.2 - Andamento mensile dei GG reali per il triennio di riferimento



Considerando che il profilo di utilizzo degli impianti di riscaldamento prevede alcuni giorni di mancata accensione dell'impianto, come riportato nella Tabella 2.2, i GG reali sono stati ricalcolati in funzione del numero di giorni effettivi di accensione dell'impianto termico, pertanto si è ottenuto un valore di 867 GG calcolati su 103 giorni effettivi di utilizzo dell'impianto di riscaldamento.

Tali GG sono valutati come la sommatoria estesa ai soli giorni di effettivo utilizzo degli impianti di riscaldamento nel periodo annuale di riscaldamento compreso tra il 1 Novembre e il 15 Aprile, delle sole differenze positive giornaliere tra la temperatura interna di 20°C e quella esterna giornaliera media mensile calcolata in funzione delle temperature orarie rilevate dalla centralina meteoclimatica.

I GG così calcolati definiscono i GG_{real} ai fini del processo di normalizzazione di cui al capitolo 5.1.1.

Figura 3.3 - Andamento mensile dei GG reali, valutati in condizioni di effettivo utilizzo degli impianti, per il triennio di riferimento

Il numero di giorni effettivi di accensione dell'impianto termico utilizzati in Tabella 3.2 fanno riferimento alla media dei tre anni oggetto di analisi.

Come si può notare dai grafici sopra riportati, l'andamento dei GG è aumentato nel triennio di riferimento, con un delta di circa 100GG tra il 2014 ed il 2016.

4 AUDIT EDIFICIO E IMPIANTI ELETTRICI E MECCANICI

4.1 DESCRIZIONE E PRESTAZIONI ENERGETICHE DELL'INVOLUCRO EDILIZIO

Di seguito è riportata la descrizione dettagliata delle componenti del sistema edificio-impianto, indicando le caratteristiche termofisiche dei componenti dell'involucro edilizio ed i rendimenti dei vari sottosistemi impiantistici presenti, facendo riferimento alle principali criticità di obsolescenza e manutentive riscontrate in sede di sopralluogo.

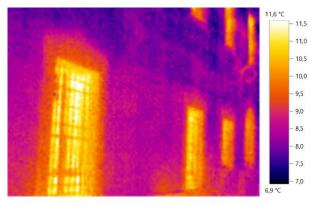
4.1.1 Involucro opaco

L'involucro edilizio opaco che costituisce l'edificio è caratterizzato da una struttura in muratura portante.

Gli elementi costruttivi utilizzati sono contraddistinti da elevati spessori e capacità termica; questi fattori incidono sul comportamento termico dell'involucro edilizio che vede mitigate le dispersioni di calore verso l'esterno durante la stagione invernale e il surriscaldamento degli ambienti durante il periodo primaverile.

Porzioni limitate dell'edificio, quali ad esempio la palestra, sono costituite da una struttura intelaiata con tamponamenti in laterizio.

Figura 4.1 - Particolare facciata Nord -Ovest fabbricato



- Rilievo termografico eseguito tramite l'utilizzo di termo camera facendo attenzione che fossero rispettate le seguenti condizioni:
 - ✓ Condizioni atmosferiche stabili;
 - ✓ Cielo nuvoloso prima e durante la misura (per misure all'aperto);
 - ✓ Assenza di luce solare diretta prima e durante la misura;
 - ✓ Assenza di precipitazioni;
 - ✓ Superficie dell'oggetto di misura asciutta e priva di fonti termiche d'interferenza (es. assenza di fogliame sulla superficie);
 - ✓ Assenza di vento o correnti d'aria;
 - ✓ Assenza di fonti d'interferenza nell'ambiente di misura o nel percorso di trasmissione;
 - ✓ La superficie dell'oggetto di misura è ottimale se ha emissività elevata e nota.
- Rilievo visivo e dimensionale dei componenti con l'individuazione degli spessori dei principali componenti.

Figura 4.2 – Rilievo termografico della parete Nord-Ovest al piano terra

I dettagli delle indagini diagnostiche effettuate sono riportate all'Allegato C – Report di indagine termografica ed all'Allegato D – Report relativi ad altre prove diagnostiche strumentali.

Le analisi termografiche condotte hanno permesso di identificare le discontinuità di trasmissione termica tra gli elementi opachi di separazione verso l'esterno; ma, considerando le elevate temperature esterne, non è stato possibile utilizzare i dati forniti dall'indagine per definire le effettive prestazioni dei pacchetti costruttivi presenti.

L'individuazione di questi ultimi è stata fatta consultando fonti bibliografiche dove, in relazione dell'anno di costruzione del fabbricato e delle dimensioni degli elementi, vengono riportate le principali soluzioni costruttive tipiche del periodo considerato con l'indicazione dei relativi valori di trasmittanza termica; i dati ricavati sono riportati nella Tabella 4.1.

Tabella 4.1 – Trasmittanze termiche dei componenti dell'involucro opaco

TIPO DI COMPONENTE	CODICE	SPESSORE	ISOLAMENTO	TRASMITTANZA TERMICA	STATO DI CONSERVAZIONE
		[cm]		[W/m₂K]	
Copertura inclinata	S1	280	Assente	1,906	Buono
COPERTURA PIANA AULE PIANO TERZO	S2	384	Assente	1,614	Buono
COPERTURA PALESTRA	S3	379	Assente	1,627	Buono
PARETE ESTERNA 80	M1	800	Assente	1,387	Sufficiente
PARETE ESTERNA 60	M2	600	Assente	1,702	Sufficiente
PARETE ESTERNA 40	M3	380	Assente	1,385	Buono
Pavimento controterra	P1	530	Assente	0,332	Buono

L'elenco completo dei componenti dell'involucro opaco, rilevati in sede di sopralluogo, e delle relative caratteristiche tecniche è riportato nella Sezione 4.1 dell' Allegato J – Schede di audit.

4.1.2 Involucro trasparente

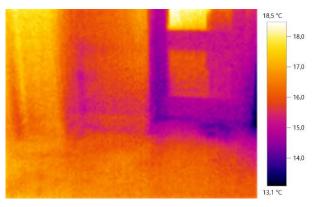
L'involucro trasparente che costituisce l'edificio è composto principalmente da serramenti con telaio in PVC e legno e vetri doppi

Lo stato di conservazione dei serramenti è medio ma le scarse caratteristiche prestazionali sono causa di rilevanti infiltrazioni d'aria all'interno degli ambienti ed elevate dispersioni termiche, creando un notevole disagio per gli utenti presenti all'interno dell'edificio.

Ai fini di un'identificazione più precisa delle caratteristiche dei componenti dell'involucro trasparente si è proceduto, in sede di sopralluogo, alla realizzazione delle seguenti indagini diagnostiche:

#-1 WORDS

Figura 4.3 - Particolare dei serramenti in alluminio


- Rilievo termografico;
- Rilievo delle caratteristiche dei vetri per mezzo dello spessivetro;
- Rilievo geometrico/dimensionale

La realizzazione delle suddette indagini ha portato alle seguenti conclusioni:

- L'irraggiamento diretto ed il conseguente surriscaldamento estivo dei locali è particolarmente limitato grazie alla presenza di tende e schermi interni sugli elementi trasparenti di aule ed uffici.
- Il telaio dei serramenti è buono, in quanto siamo in presenza di serrament in PVC o in legno;
- Le guaine dei serramenti tuttavia non sono sufficienti e ciò causa infiltrazioni d'acqua.

Figura 4.4 – Rilievo termografico serramenti sala mensa

Dalle analisi effettuate sono stati identificati i valori di trasmittanza dei componenti dell'involucro trasparente riportati nella Tabella 4.2.

Tabella 4.2 – Trasmittanze termiche dei componenti dell'involucro trasparente

TIPO DI COMPONENTE	CODICE	DIMENSIONI [HXL] [cm]	TIPO TELAIO	TIPO VETRO	TRASMITTANZA TERMICA [W/mqK]	STATO DI CONSERVAZIONE
Serramento verticale	W1	260X100	PVC	Doppio	2,759	Buono
Serramento verticale	W2	165X235	PVC	Doppio	2,82	Buono
Serramento verticale	W6	160X160	PVC	Doppio	2,795	Buono
Serramento verticale	W8	90X90	PVC	Doppio	2,829	Buono

Serramento verticale	W10	135X220	PVC	Doppio	3,029	Buono
Serramento verticale	W11	130X70	PVC	Doppio	2,937	Buono
Serramento verticale	W12	290X380	PVC	Doppio	2,777	Buono
Serramento verticale	W13	270X250	PVC	Doppio	2,768	Buono
Portafinestra	D1	130X220	PVC	Singolo	4,592	Buono
Portafinestra	D3	90X210	PVC	Singolo	4,291	Buono
Portafinestra	D5	160x240	PVC	Singolo	4,767	Buono
Portafinestra	D6	130X270	PVC	Singolo	2,825	Buono
Portafinestra	D7	160X300+80	PVC	Singolo	4,616	Buono
Portafinestra	D8	290X270+140	PVC	Singolo	2,737	Buono
Portafinestra	D10	270X400	PVC	Singolo	2,761	Buono
Serramento verticale	W15	175X175	Legno	Doppio	2,749	Buono
Portafinestra	D11	120X400	PVC	Singolo	4,528	Buono
Portafinestra	D12	120X255	PVC	Singolo	4,777	Buono

L'elenco completo dei componenti dell'involucro trasparente, rilevati in sede di sopralluogo, e delle relative caratteristiche tecniche è riportato nella Sezione 4.2 dell' Allegato J – Schede di audit.

4.2 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI RISCALDAMENTO/ CLIMATIZZAZIONE INVERNALE

L'impianto di riscaldamento degli ambienti è costituito da una caldaia a basamento a condensazione alimentata a gas naturale che serve le zone termiche Scuola e Palestra, e da una caldaia a gas di tipo murale a servizio della zona termica Piano secondo ammezzato.

4.2.1 Sottosistema di emissione

Il sottosistema di emissione nelle aule e nei corridoi è costituito principalmente da radiatori in ghisa di diversa dimensione in relazione alla dimensione e alla destinazione d'uso dell'ambiente servito, radiatori a colonne in acciaio in alcuni blocchi bagno, da aerotermi nel solo locale palestra, e da ventilconvettori negli uffici.

I terminali sono per la maggior parte installati su parete esterna, sotto finestra.

Figura 4.5 - Particolare radiatori su parete esterna

Figura 4.6 – Particolare ventil convettore su parete esterna

Figura 4.7 - Particolare aerotermi palestra

I rendimenti di emissione desunti dal modello di calcolo delle DE sono i seguenti:

Tabella 4.3 - Rendimenti del sottosistema di emissione per le varie zone termiche

ZONA TERMICA	TIPOLOGIA DI TERMINALE	RENDIMENTO
Scuola	Radiatori	94%
Palestra	Aerotermi	98%
Piano secondo ammezzato	Ventilconvettori	95%

Le caratteristiche dei terminali di emissione installati sono sintetizzate nella Tabella 4.4.

Tabella 4.4 - Riepilogo caratteristiche dei terminali di emissione installati

PIANO	TIPO DI INSTALLAZIONE	NUMERO	POTENZA TERMICA UNITARIA	POTENZA TERMICA COMPLESSIVA	POTENZA FRIGORIFERA UNITARIA	POTENZA FRIGORIFERA COMPLESSIVA
			[kW]	[kW]	[kW]	[kW]
Terra e Primo	Radiatore a parete	28	1,1	31	Np	Np
Ammezzato	Aerotermo a parete	8	3,13	25	Np	Np
Primo	Radiatore a parete	35	0,6	21	Np	Np
Secondo	Radiatore a parete	2	0,38	0,76	Np	Np
Ammezzato	Ventilconvettori	5	2,48	12,4	Np	Np
Piano Secondo	Radiatore a parete	20	1,123	22,47	Np	Np
Piano terzo	Radiatore a parete	26	1,265	32,91	Np	Np
TOTALE				145,54	np	np

La potenza unitaria dei corpi scaldanti è stata valutata considerando il fabbisogno termico di picco degli ambienti serviti, relazionato al numero di terminali rilevato in fase di sopralluogo.

L'elenco dei componenti del sottosistema di emissione per il riscaldamento degli ambienti, rilevati in sede di sopralluogo, e delle relative caratteristiche tecniche è riportato nella Sezione 6.5 dell'Allegato I – Schede di audit.

4.2.2 Sottosistema di regolazione

La regolazione del funzionamento dell'impianto avviene attraverso l'impostazione degli orari di funzionamento e delle temperature di set-point, che al momento del sopralluogo (periodo invernale) era impostata a 20°C.

L'architettura dell'impianto di climatizzazione, come accennato, prevede due zone termiche; la regolazione, di tipo climatica esterna, agisce sul collettore principale di mandata che alimenta i due circuiti, ciascuno a servizio della singola zona climatica. Uno dei due circuiti è dotato di valvola

miscelatrice a tre vie, che mitiga la portata proveniente dalla caldaia con il flusso di ritorno dall'impianto così da poter gestire temperature inferiori rispetto a quelle del collettore principale.

Al piano secondo ammezzato è invece presente una regolazione climatica tramite termostato di regolazione.

Figura 4.8 – Sottosistema di distribuzione

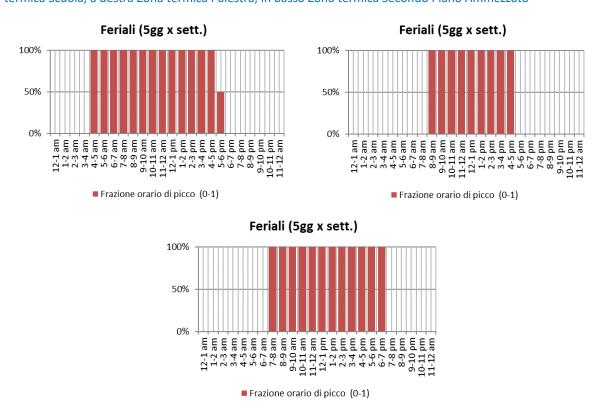


Figura 4.9 – Termostato di regolazione piano secondo ammezzato

Di seguito sono riportati i profili orari di funzionamento degli impianti

Figura 4.10 - Profilo di funzionamento invernale dell'impianto per tutte le zone termiche : a sinistra Zona termica Scuola, a destra Zona termica Palestra, in basso Zona termica Secondo Piano Ammezzato

Il dettaglio dei profili orari di funzionamento, rilevati in sede di sopralluogo, è riportato nella Sezione 12 dell' Allegato J – Schede di audit.

I rendimenti di regolazione desunti dal modello di calcolo delle DE sono riportati nella Tabella 4.5:

Tabella 4.5 - Rendimenti del sottosistema di regolazione per le varie zone termiche

ZONA TERMICA	TIPO DI REGOLAZIONE	RENDIMENTO
Scuola	Climatica esterna	76,3%
Palestra	Climatica esterna + Zona	96%
Piano secondo ammezzato	Singolo ambiente	94%

L'elenco dei componenti del sottosistema di regolazione per il riscaldamento degli ambienti, rilevati in sede di sopralluogo, e delle relative caratteristiche tecniche è riportato nella Sezione 6.5 dell' Allegato J – Schede di audit.

4.2.3 Sottosistema di distribuzione

Il sottosistema di distribuzione è costituito dai seguenti elementi:

- 1) Circuito primario di collegamento tra la caldaia e lo scambiatore di calore
- 2) Circuito secondario di collegamento tra lo scambiatore di calore e gli utilizzatori nelle due zone termiche
- Circuito primario: è presente una pompa di circolazione singola a velocità variabile
 Le caratteristiche dei circolatori a servizio del circuito primario sono riportate nella Tabella 4.6.

Tabella 4.6 - Riepilogo caratteristiche pompe circuito primario

	NOME	SERVIZIO	PORTATA ⁽⁶⁾	PREVALENZA ⁽⁶⁾	POTENZA ASSORBITA (6)
					[kW]
Caldaia a condensazione	P1	mandata acqua calda scambiatore	9,6 - 30	6	0,355

Nota (6): Valori ricavati da dati di targa

Le temperature del fluido termovettore all'interno del circuito primario sono riportate nella Tabella 4.7.

Tabella 4.7 – Temperature di mandata e ritorno del circuito primario

CIRCUITO			TEMPERATURA RILEVATA ⁽⁷⁾	TEMPERATURA CALCOLO
Caldaia a condensazione	Mandata	Caldo	64	65
Caldaia a condensazione	Ritorno	Caldo	57	60

Nota (7): Valori ricavati in sede di sopralluogo.

- 2) **Circuito secondario**: sono presenti due pompe di circolazione gemellari, una per ciascuna mandata dei due circuiti secondari così denominati:
- Zona 1: Scuola
- Zona 2: Palestra

Le caratteristiche dei circolatori gemellari a velocità variabile a funzionamento in parallelo a servizio dei circuiti secondari sono riportate nella Tabella 4.8.

Tabella 4.8 - Riepilogo caratteristiche pompe circuito secondario

	NOME	SERVIZIO	PORTATA ⁽⁸⁾	PREVALENZA ⁽⁸⁾	POTENZA ASSORBITA (8)
					kW
Zona 1	Scuola	mandata acqua calda	7,2 - 30	4,2 – 14,2	0,530
Zona 2	Palestra	mandata acqua calda	7,2 - 18	11,5 – 5,2	0,465

Nota (8): Valori ricavati da dati di targa

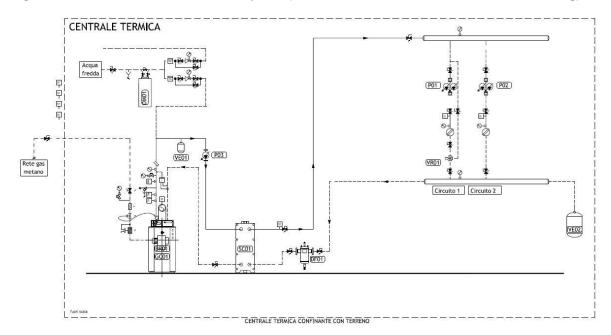

Le temperature del fluido termovettore all'interno del circuito secondario sono riportate nella Tabella 4.9.

Tabella 4.9 – Temperature di mandata e ritorno del circuito secondario

	CIRCUITO		TEMPERATURA RILEVATA ⁽⁹⁾	TEMPERATURA CALCOLO
Zona 1	Mandata	Caldo	54	50
	Ritorno	Caldo	47	40
Zona 2	Mandata	Caldo	54	50
	Ritorno	Caldo	47	45

Nota (9): Valori rilevati il giorno 20/11/2017 alle ore 12.00, con una temperatura esterna di circa 13° C

Figura 4.11 - Particolare dello schema di impianto (Fonte: Tavola 053-S01-001-CENTRALE TERMICA.dwg)

Il rendimento complessivo del sottosistema di distribuzione è stato assunto nella DE pari al 95,51%.

L'elenco dei componenti del sottosistema di distribuzione per il riscaldamento degli ambienti, rilevati in sede di sopralluogo, e delle relative caratteristiche tecniche è riportato nella Sezione 6.4 dell' Allegato J – Schede di audit.

¹ UNI TS 11300-2 2014

4.2.4 Sottosistema di generazione

Il sottosistema di generazione è costituito da una caldaia a basamento a condensazione alimentata a gas naturale, marca Ravasio e modello MDL-250, installata internamente al locale centrale termica del fabbricato, e da una caldaia a gas murale, marca FER e modello Ferella Gold HF 24MEL.

Figura 4.12 - Particolare generatore Ravasio

Openir "paercolae di Spo C deve essere instalaso solizzano.
Joodditti di seprimo ene se sacrito Juni forni data "ROUSTITE
FER" - secondo quinos soliziolisti anno mon UNI-CIO 717900.
Junicato sultira di solizioni di decidera automiticamene
ogni geranzia e responsabilità dello "NOUSTITE FER".

Figura 4.13 - Particolare caldaia murale FER

Le caratteristiche dei sistemi di generazione sono riportate nella Tabella 4.10.

Tabella 4.10 - Riepilogo caratteristiche sistema di generazione

	Servizio	MARCA	MODELLO	ANNO DI COSTRUZIONE	POTENZA AL FOCOLARE	POTENZA TERMICA UTILE ⁽¹⁰⁾	RENDIMENTO ⁽¹⁰⁾	POTENZA ASSORBITA COMPLESSIVA (10)
					[kW]	[kW]		[kW]
GT1	Riscaldamento	Ravasio	MDL-250	2017	50 - 250	min-max: 245 (Tm 80°C e Tr 60°C) min-max: 259 (Tm 50°C e Tr 30°C)"	98% (80/60°C) 103,5% (50/30°C)	0,375
GT2	Riscaldamento	FER	Ferella Gold HF 24 MEL	-	25,8	23,5	92,24	0,125

Nota (10): Valori ricavati da dati di targa

Non è stato possibile confrontare il rendimento della caldaia con il rendimento di combustione calcolato tramite l'analisi dei fumi in quanto il libretto caldaia non era presente. Nella DE il rendimento della caldaia è stato assunto pari a 94,50 % per GT1 e 91,07 per GT2.

Il rendimento complessivo del sottosistema di generazione, in regime di riscaldamento è stato assunto nella DE pari al 88,8² per GT1 e 84.,6 per GT2%.

L'elenco dei componenti del sottosistema di generazione per il riscaldamento degli ambienti rilevati in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 6.1 dell' Allegato J – Schede di audit.

² UNI TS 11300-2 2014

4.3 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO PRODUZIONE ACQUA CALDA SANITARIA

Il consumo di acqua calda sanitaria è relativamente ridotto data la destinazione d'uso dell'edificio.

La produzione è eseguita attraverso l'utilizzo di 8 boiler elettrici indipendenti installati nei singoli blocchi bagno

I rendimenti caratteristici dei sottosistemi dell'impianto di produzione acqua calda sanitaria sono riportati nella Tabella 4.11.

Tabella 4.11 – Rendimenti dell'impianto di produzione acqua calda sanitaria

SOTTOSISTEMA DI EROGAZIONE	SOTTOSISTEMA DI DISTRIBUZIONE	SOTTOSISTEMA DI RICIRCOLO	SOTTOSISTEMA DI ACCUMULO	SOTTOSISTEMA DI GENERAZIONE ⁽¹¹⁾	RENDIMENTO GLOBALE MEDIO STAGIONALE ⁽¹¹⁾
100%	92,6%	-	-	38,5	35,6

Nota (11): UNI TS 11300-2 2014

L'elenco dei componenti dell'impianto di produzione acqua calda sanitaria rilevati in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 7 dell' Allegato J – Schede di audit.

4.4 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI RAFFRESCAMENTO/CLIMATIZZAZIONE ESTIVA

Figura 4.15 - Particolare di unità di rinnovo e purificazione dell'aria, a tutta aria esterna

La climatizzazione in regime estivo è effettuata grazie alla presenza di una unità di rinnovo e purificazione dell'aria, a tutta aria esterna.

L'impianto serve le aule del piano terzo.

I rendimenti caratteristici dei sottosistemi dell'impianto di climatizzazione estiva sono riportati nella tabella Tabella 4.12.

Tabella 4.12 – Rendimenti dell'impianto di climatizzazione estiva

SOTTOSISTEMA DI EMISSIONE	SOTTOSISTEMA DI REGOLAZIONE	SOTTOSISTEMA DI DISTRIBUZIONE	SOTTOSISTEMA DI ACCUMULO	SOTTOSISTEMA DI GENERAZIONE ⁽¹²⁾	RENDIMENTO GLOBALE MEDIO STAGIONALE
97%	94%	-	-	87,7 %	-

Nota (12): UNI TS 11300-3 2014

L'elenco dei componenti dell'impianto di climatizzazione estiva rilevati in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 11 dell' Allegato J – Schede di audit.

4.5 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO DI VENTILAZIONE MECCANICA

La ventilazione meccanica controllata, limitata alle aule del terzo piano, è effettuata grazie all'unità dedicata al raffrescamento. L'emissione in ambiente avviene per mezzo di diffusori in tessuto, a sezione circolare, posti a ridosso del soffitto delle aule stesse; i terminali di ripresa ambiente sono invece griglie, attestate ad una canalizzazione metallica con sviluppo nel corridoio.

Figura 4.16 - Particolare sottosistema di emissione in ambiente

L'elenco dei componenti dell'impianto di ventilazione meccanica controllata rilevati in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 8 dell' Allegato J – Schede di audit.

4.6 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO ELETTRICO E PRINCIPALI UTENZE ELETTRICHE

Le utenze sottese all'impianto elettrico, oltre a quelle precedentemente descritte, sono legate principalmente alle attività didattiche svolte all'interno degli ambienti; si fa riferimento quindi ai pc del

laboratorio di informatica, alle esigue lavagne interattive multimediali presenti e marginalmente a stampanti e distributori bevande/alimenti.

Tali tipologie di utenze sono state raggruppate insieme ed identificate con la denominazione di forza elettromotrice (FEM) e sono riportate nella Tabella 4.13.

Tabella 4.13 – Elenco e caratteristiche delle altre utenze elettriche

PIANO EDIFICIO	DESCRIZIONE	NUMERO	POTENZA NOMINALE	POTENZA COMPLESSIVA	ORE ANNUE DI UTILIZZO
			[W]	[W]	[ore]
	Computer	20	150 W 0,05 W	3.000	687 (3 h/g per 208gg)
	Monitor	20	75 W 0,01 W	1.500	687 (3 h/g per 208gg)
Piani secondo e	Rack dati	1	500 W	500	8760 (24 h/g per 365 gg)
terzo	Multifunzione	4	200 W 0,05 W	600	344 (1,7 h/g per 208gg)
	Distributori automatici	4	600 W	2.400	8760 (24 h/g per 365gg)
	Centrali di allarme	2	115 W	230	8760 (24 h/g per 365 gg)
	LIM	5	500 W	2.500	1031 (5 h/g per 208gg)
_	Forno a microonde	1	1100 W	2.200	687 (3 h/g per 208gg)
Piano terra	Scaldavivande	1	1200 W	1.200	1031 (5 h/g per 208gg)
riano terra	Ascensore	1	5000 W 50 W	5000	362 (1,7 h/g per 208gg)

Ai fini di un'identificazione più precisa del funzionamento dei componenti impiantistici si è proceduto, in sede di sopralluogo, alla realizzazione delle seguenti indagini diagnostiche:

- Misure di assorbimento elettrico sulle principali linee di alimentazione dei carichi;
- Rilievo dei dati di targa delle utenze installate

La realizzazione delle suddette indagini ha portato a concludere che i principali carichi elettrici del fabbricato sono imputabili alla forza elettromotrice perché durante l'arco della giornata i carichi misurati sono rimasti pressoché costanti.

L'analisi dettagliata relativa alla FEM è riportata nell'Allegato B – Elaborati.

L'elenco delle altre utenze elettriche rilevate in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 11 dell' Allegato J – Schede di audit.

4.7 DESCRIZIONE E PRESTAZIONI ENERGETICHE IMPIANTO ILLUMINAZIONE

L'impianto di illuminazione è prettamente costituito da lampade fluorescenti di diversa taglia, in funzione della tipologia di utilizzo dei locali.

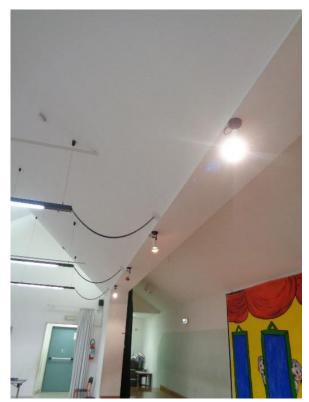
Il sistema di gestione dell'impianto di illuminazione è di tipo manuale, con accensione e spegnimento dei corpi illuminanti del tipo on/off e nessuna suddivisione delle accensioni all'interno degli ambienti.

Figura 4.17 - Particolare corpi illuminanti corridoi

L'elenco e le caratteristiche dei corpi illuminanti sono riportate nella Tabella 4.14.

Tabella 4.14 – Elenco e caratteristiche dei corpi illuminanti

PIANO EDIFICIO	DESCRIZIONE	NUMERO	POTENZA UNITARIA	POTENZA COMPLESSIVA


				[W]	[W]
Piano Terra		fluorescenti 1x58W	6	58	348
	fluorescenti 2x58W	32	116	3.712	
		fluorescenti 4x18W	6	58	348
		fluorescenti 2x58W	37	116	4.292
Piano Primo		fluorescenti 2x18W	18	36	648
		fluorescenti 2x26W	12	52	624
Piano primo		fluorescenti 1x26W	5	26	130
ammezzato		fluorescenti 2x58W	10	116	1.160
Piano secondo		fluorescenti 2x58W	32	116	3.712
Plano secondo)	fluorescenti 2x18W	14	36	504
		fluorescenti 2x58W	6	116	696
Piano	secondo	fluorescenti 4x18W	6	72	432
ammezzato		fluorescenti 2x18W	2	36	72
		fluorescenti 2x26W	4	52	208
		fluorescenti 2x58W	28	116	3.248
		fluorescenti 2x18W	10	36	360
Piano terzo		fluorescenti 2x26W	4	52	208
		fluorescenti 1x58W	12	58	696
		alogena 1x16W	4	16	64

L'elenco completo dei corpi illuminanti rilevati in sede di sopralluogo e delle relative caratteristiche tecniche è riportato nella Sezione 10 dell' Allegato J – Schede di audit.

Figura 4.18 - Particolare dei corpi illuminanti ubicati nella Palestra

Figura 4.19 - Particolare dei corpi illuminanti ubicati nel teatro

4.8 DESCRIZIONE E PRESTAZIONI ENERGETICHE DI IMPIANTI DI PRODUZIONE ENERGIA ELETTRICA O COGENERAZIONE

Non presente impianto di produzione di energia elettrica da fonti rinnovabili

5 CONSUMI RILEVATI

5.1 CONSUMI ENERGETICI STORICI PER CIASCUN VETTORE E CONNESSIONE ALLE RETI GAS NATURALE ED ELETTRICA

L'analisi dei consumi storici termici ed elettrici dell'edificio oggetto della DE è stata effettuata facendo riferimento al triennio 2014, 2015 e 2016.

I vettori energetici analizzati sono i seguenti:

- Gas metano;
- Energia elettrica;

5.1.1 Energia termica

Il vettore termico utilizzato per la climatizzazione invernale della struttura, la produzione di ACS e la cucina della mensa è il Gas Metano.

Nella Tabella 5.1 sono riportati i valori di Potere Calorifico Inferiore (PCI) forniti dalla norma UNI TS 11300-2:2014 ed utilizzati ai fini della conversione in kWh.

Tabella 5.1 – Valori di PCI utilizzati ai fini della conversione in kWh

TIPO COMBUSTIBILE	PCI	DENSITÀ	PCI	FATTORE DI CONVERSIONE	PCI
	[kWh/kg]	[kWh/Sm³]	[kWh/Nm³]	[Sm³/Nm³]	[kWh/Sm³]
Metano	n/a	n/a	9,94 (13)	1,0549	9,42
Gasolio	11,87 ⁽¹³⁾	0,85	n/a	n/a	10,09

Nota (13) Fonte: Prospetto B.19 UNI TS 11300-2:2014

La fornitura di Gas metano avviene tramite la presenza di due contatori i quali risultato a servizio dei seguenti utilizzi:

- Centrale termica per il riscaldamento degli ambienti
- Caldaia murale a gas per il riscaldamento degli ambienti;

L'effettiva ubicazione dei contatori è rappresentata nelle planimetrie riportate all' Allegato B – Elaborati

L'analisi dei consumi storici si basa sulla base de m³ annui di gas metano forniti dalla PA e riportati nel file Excel "kyotoBaseline-E0829" rev09" (i valori sono quelli forniti dalla società di distribuzione).

Tali consumi sono riportati nella Tabella 5.2 con indicazione dei PDR di riferimento.

Tabella 5.2 - Consumi annuali di energia termica per il triennio di riferimento – Dati forniti dalla società di distribuzione

PDR	Utilizzo	2014	2015	2016	2014	2015	2016
		[Sm³]	[Sm3]	[Sm3]	[kWh]	[kWh]	[kWh]
016220050595481	Riscaldamento	-	10.587	10.987		99.729,54	10347,54

03270009562239 Riscaldamento 7 754 875 65,94 7.102,68 8.242,5

I consumi riferiti al POD 03270009562239 sono stati confrontati con i consumi annui elaborati e forniti dalla PA ed (identificati per l'edificio oggetto della DE all'interno del file kyotoBaseline-E0829). Dal confronto sono emerse le seguenti differenze:

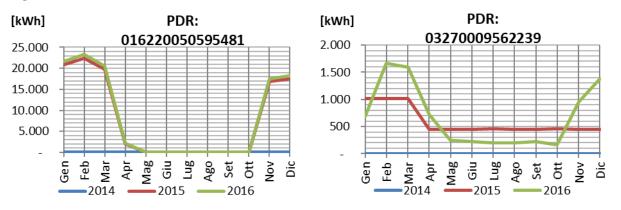
- i dati delle fatture 2015 sono inferiori a quelli del file kyotoBaseline-E0829 del 10,05%
- i dati delle fatture 2016 sono maggiori a quelli del file kyotoBaseline-E0829 del 4,91%

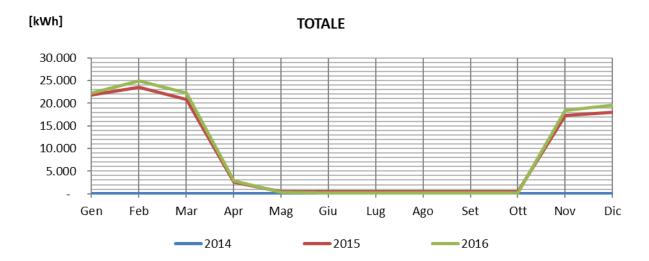
Parallelamente all'analisi dei consumi storici forniti dalla società di distribuzione si è provveduto alla valutazione dei consumi fatturati nel triennio di riferimento.

L'andamento dei consumi stagionali del vettore energetico è stato desunto dalle fatture (Caldaia murale a gas) e dal modello energetico dell'edificio, applicando la percentuale mensile di incidenza dei consumi ai totali annui forniti dalla PA.

L'andamento mensile dei consumi è riportato nella Tabella 5.3.

Tabella 5.3 - Consumi mensili di energia termica per il triennio di riferimento – Dati forniti dalla società di distribuzione


PDR: 016220050595481	2014	2015	2016	2014	2015	2016
Mese	[Sm³]	[Sm³]	[Sm³]	[kWh]	[kWh]	[kWh]
Gen		2.210	2.294	-	20.821	21.608
Feb		2.385	2.475	-	22.466	23.315
Mar		2.109	2.189	-	19.865	20.616
Apr		223	231	-	2.101	2.180
Mag		-	-	-	-	-
Giu		-	-	-	-	-
Lug		-	-	-	-	-
Ago		-	-	-	-	-
Set		-	-	-	-	-
Ott		-	-	-	-	-
Nov		1.795	1.862	-	16.905	17.543
Dic		1.865	1.936	-	17.572	18.236
Totale		10.587	10.987	-	99.730	103.498
PDR: 03270009562239	2014	2015	2016	2014	2015	2016
Mese	[Sm³]	[Sm³]	[Sm³]	[kWh]	[kWh]	[kWh]
Gen		108	72	-	1.017	678
Feb		108	177	-	1.017	1.667
Mar		108	169	-	1.017	1.592
Apr		47	76	-	443	716
Mag		48	26	-	452	245
Giu			24	_	443	226
		47	24		443	
Lug		47 49	21	-	462	198
Lug Ago						
		49	21		462	198
Ago		49 48	21 21		462 452	198 198
Ago Set		49 48 47	21 21 24	-	462 452 443	198 198 226



Totale 754 875 - 7.103 8.243

L'andamento dei consumi mensili fatturati è riportato nei grafici in Figura 5.1.

Figura 5.1 – Andamento mensile dei consumi termici fatturati

Dall'analisi effettuata è i consumi annui non hanno subito una sostanziale variazione e gli andamenti sono i medesimi nelle tre annualità considerate.

Considerando che i consumi di gas metano a servizio degli impianti di riscaldamento degli ambienti sono soggetti a variazioni dovute all'andamento degli effettivi dati climatici che hanno caratterizzato il triennio di riferimento, si è reso necessario riportare tali consumi ad un comportamento normalizzato e non più strettamente dipendente dalle caratteristiche climatiche dell'anno a cui si riferiscono, con lo scopo di ottenere un consumo destagionalizzato che possa poi essere utilizzato per effettuare la taratura del modello energetico di cui al capitolo 6.1.

Per effettuare tale processo di normalizzazione si sono utilizzati i GG reali del triennio di riferimento ed i GG di riferimento come valutati al Capitolo 3, definendo il fattore di normalizzazione \overline{a}_{rif} come di seguito riportato:

$$\overline{a}_{rif} = \frac{\sum_{i=1}^{n} Q_{real,i}}{\sum_{i=1}^{n} GG_{real,i}}$$

Dove:

GG _{real,i} = Gradi giorno valutati considerando le temperature esterne reali, nell'anno *i-esimo*, così come definiti al Capitolo 3.2;

n = numero di annualità di cui si hanno a disposizione i consumi.

Q real,i = Consumo termico reale per riscaldamento dell'edificio nell'anno i-esimo, kWh/anno.

Tale consumo è stato valutato scorporando, dal consumo complessivo del contatore che alimenta la centrale termica, il contributo per la produzione di acqua calda sanitaria, valutato considerando il numero di utenze.

E' ora quindi possibile valutare il consumo destagionalizzato, come di seguito riportato:

$$Q_{baseline} = \overline{a}_{rif} x GG_{rif} + \overline{Q}_{ACS} + \overline{Q}_{ALTRO}$$

GG _{rif} = Gradi giorno di riferimento utilizzati nella modellazione dell'edificio, così come definiti al Capitolo 3.1;

 \overline{Q}_{ACS} = Consumo termico reale per ACS dell'edificio, kWh/anno, valutato come la media dei consumi per l'ACS nel triennio di riferimento;

 Q_{ALTRO} = Consumo termico reale per eventuali altri utilizzi dell'edificio, kWh/anno, valutato come la media dei consumi per altri usi, nel triennio di riferimento. Tale contributo non è stato valutato in quanto i suddetti utilizzi sono serviti da un contatore dedicato, pertanto con concorrono nel calcolo della baseline dei consumi energetici.

Si sottolinea che ai fini della normalizzazione e della successiva validazione del modello energetico si utilizzeranno per la definizione dei consumi reali, Q real,i, i consumi di gas metano forniti dalla società di distribuzione.

Tabella 5.4 – Normalizzazione dei consumi annuali di energia termica

ANNO	GG _{REAI} SU 103 GIORNI	GG _{RIF} SU 103 GIORNI	CONSUMO REALE RISC.	CONSUMO REALE RISC.	$lpha_{ m rif}$	CONSUMO NORMALIZZATO A [867] GG	CONSUMO ACS	CONSUMO ALTRO
			[Smc]	[kWh]		[kWh]	[kWh]	[kWh]
2014								
2015	886	867	11.341	106.832	120,6	104.541	-	-
2016	950	867	11.862	111.740	117,6	101.977	-	-
Media	918	867	11.602	109.286	119	103.259	-	=

Come si può notare dai dati riportati il comportamento energetico dell'edificio, negli anni considerati, è stato caratterizzato da un andamento costante dei consumi, con lievi scarti in funzione delle diverse condizioni climatiche esterne e dei profili di funzionamento degli impianti.

Si sono pertanto definiti per il calcolo della Baseline i parametri riportati nella Tabella 5.5:

Tabella 5.5 –Individuazione della Baseline termica

GRANDEZZA	VALORE
	[Kwh]
\overline{Q}_{ACS}	-
\overline{Q}_{ALTRO}	-
$\overline{Q}_{ALTRO} \ \overline{a}_{rif} \ x \ GG_{rif}$	103.214
$oldsymbol{Q}_{baseline}$	103.214

5.1.2 Energia elettrica

La fornitura di energia elettrica avviene tramite la presenza di un contatore il quali risulta a servizio di tutto il fabbricato.

L'effettiva ubicazione dei contatori è rappresentata nelle planimetrie riportate all' Allegato B –

L'elenco delle fatture analizzate è riportato all' Allegato A – Elenco documentazione fornita dalla committenza.

L'analisi dei consumi storici di energia elettrica si basa sulla base dei kWh ottenuti dai dati di fatturazione rilevati nel triennio di riferimento.

Tali consumi annuali sono riportati nella Tabella 5.6 con indicazione del POD di riferimento.

Tabella 5.6 – Elenco POD e relativi consumi annuali per il triennio di riferimento

POD	ZONA SERVITA	2014	2015	2016	MEDIA
		[kWh]	[kWh]	[kWh]	[kWh]
IT001E00096317	Scuola elementare	63.822	66.897	66.642	65.787

Tali consumi sono stati confrontati con i consumi annui elaborati e forniti dalla PA ed (identificati per l'edificio oggetto della DE all'interno del file kyotoBaseline-E829) ed è emerso come questi ultimi fossero più alti di quelli riportati nelle fatture fornite.

Dal confronto sono emerse le seguenti differenze:

- i dati delle fatture 2014 sono pari a quelli del file kyotoBaseline-E0829
- i dati delle fatture 2015 sono inferiori a quelli del file kyotoBaseline-E0829 del 5,87%
- i dati delle fatture 2016 sono inferiori a quelli del file kyotoBaseline-E0829 del 7,85%

L'individuazione della baseline elettrica di riferimento è calcolata sulla media aritmetica dei valori relativi ai consumi elettrici reali per il triennio di riferimento.

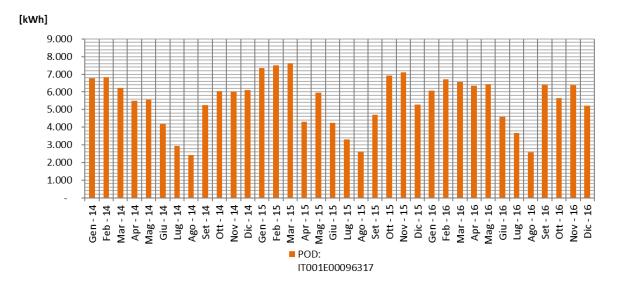
Si è pertanto definito un consumo EE_{baseline} pari a 65.787 kWh/anno.

Tabella 5.7 – Consumi mensili di energia elettrica suddivisi per fasce, per il triennio di riferimento

POD: IT001E00096317	F1	F2	F3	TOTALE	
Anno 2014	[kWh]	[kWh]	[kWh]	[kWh]	
Gen - 14	4.547	914	1.308	6.769	
Feb - 14	4.677	983	1.170	6.830	
Mar - 14	4.167	916	1.137	6.220	
Apr - 14	3.512	792	1.197	5.501	
Mag - 14	3.609	841	1.099	5.549	
Giu - 14	2.574	647	955	4.176	
Lug - 14	1.407	575	957	2.939	
Ago - 14	928	493	1.000	2.421	
Set - 14	3.426	799	1.034	5.259	
Ott - 14	4.104	929	1.016	6.049	
Nov - 14	4.008	837	1.152	5.997	
Dic - 14	3.861	866	1.385	6.112	
Totale	40.820	9.592	13.410	63.822	
POD: IT001E00096317	F1	F2	F3	TOTALE	
Anno 2015	[kWh]	[kWh]	[kWh]	[kWh]	
Gen - 15	4.545	1.204	1.601	7.350	
Feb - 15	4.847	1.150	1.509	7.506	
Mar - 15	4.978	1.163	1.495	7.636	
Apr - 15	2.487	732	1.087	4.306	
Mag - 15	3.718	900	1.332	5.950	
Giu - 15	2.582	682	984	4.248	
Lug - 15	1.862	554	872	3.288	
Ago - 15	1.263	439	899	2.601	
Set - 15	2.820	733	1.145	4.698	
Ott - 15	4.859	997	1.064	6.920	

Nov - 15	5.044	953	1.113	7.110
Dic - 15	3.428	795	1.061	5.284
Totale	42.433	10.302	14.162	66.897
POD: IT001E00096317	F1	F2	F3	TOTALE
Anno 2016	[kWh]	[kWh]	[kWh]	[kWh]
Gen - 16	4.234	765	1.076	6.075
Feb - 16	4.998	871	828	6.697
Mar - 16	4.708	895	968	6.571
Apr - 16	4.259	953	1.136	6.348
Mag - 16	4.728	816	893	6.437
Giu - 16	3.185	629	766	4.580
Lug - 16	2.234	658	785	3.677
Ago - 16	1.365	485	736	2.586
Set - 16	4.361	939	1.109	6.409
Ott - 16	4.182	712	756	5.650
Nov - 16	4.821	736	828	6.385
Dic - 16	3.529	733	965	5.227
Totale	46.604	9.192	10.846	66.642

Dall'analisi effettuata è stato possibile definire i profili mensili dei consumi elettrici di Baseline, valutati come la media dei valori mensili analizzati nel triennio di riferimento.
Tali valori sono riportati nella Tabella 5.8.


Tabella 5.8 – Consumi mensili di Baseline

BASELINE	F1	F2	F3	TOTALE
Mese	[kWh]	[kWh]	[kWh]	[kWh]
Gennaio	4.442	961	1.328	6.731
Febbraio	4.841	1.001	1.169	7.011
Marzo	4.618	991	1.200	6.809
Aprile	3.419	826	1.140	5.385
Maggio	4.018	852	1.108	5.979
Giugno	2.780	653	902	4.335
Luglio	1.834	596	871	3.301
Agosto	1.185	472	878	2.536
Settembre	3.536	824	1.096	5.455
Ottobre	4.382	879	945	6.206
Novembre	4.624	842	1.031	6.497
Dicembre	3.606	798	1.137	5.541
Totale	43.286	9.695	12.806	65.787

L'andamento dei consumi elettrici mensili nel triennio di riferimento e di Baseline è riportato nel grafico in Figura 5.2.

Figura 5.2 – Confronto tra i profili elettrici reali relativi a ciascun POD per il triennio di riferimento

E' stato inoltre possibile rappresentare i profili giornalieri dei consumi elettrici accedendo alle informazioni fornite dalla società di distribuzione dell'energia elettrica, il quale rende disponibili i prelievi di energia elettrica con cadenza quarti oraria.

Si sono pertanto analizzati dei profili giornalieri campione, rappresentativi delle diverse condizioni di utilizzo dell'edificio e di funzionamento dell'impianto.

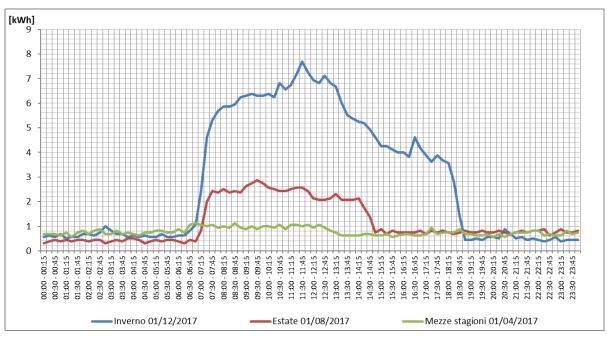

Le giornate analizzate sono riportate nella Tabella 5.9

Tabella 5.9 – Giornate valutate per l'analisi dei profili giornalieri di consumo elettrico

PROFILO	DATA	GIORNO DELLA SETTIMANA	PERIODO	TEMPERATURA ESTERNA MEDIA
				[°C]
[Profilo 1]	[01/12/2017]	venerdì	Periodo scolastico	11
[Profilo 2]	[01/08/2017]	martedì	Periodo di Vacanze	28
[Profilo 3]	[01/04/2017]	Sabato	Periodo scolastico	16

L'andamento dei profili giornalieri di consumo è riportato nei grafici in Figura 5.3.

Figura 5.3 – Profili giornalieri tipo dei consumi elettrici per il POD IT001E00096317

Dai grafici così ottenuti si rileva un andamento dei consumi elevato durante i mesi invernali ed un appiattimento dei consumi nei giorni di chiusura della scuola, non solo durante il periodo estivo. Tali andamenti risultano coerenti rispetto alle caratteristiche delle utenze rilevate in sede di sopralluogo, pertanto si ritiene affidabile quanto analizzato ed un valido punto di partenza per definire le strategie di efficientamento del sito.

La base elettrica è rappresentata dalle apparecchiature che hanno un funzionamento continuo durante l'anno (Rack dati, Distributori automatici, Centrali d'allarme).

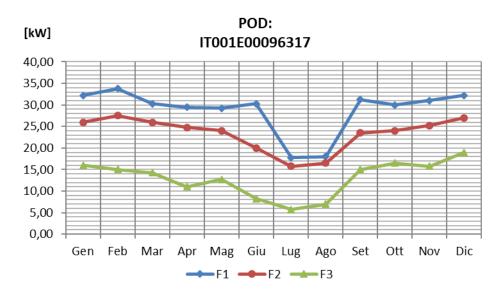
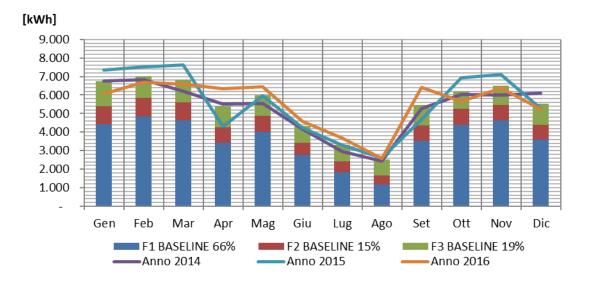


Figura 5.4 – Profili di potenza giornalieri per il POD IT001E00096113


Il prelievo di potenza massima è pari a circa 32kW e si verifica durante i mesi di apertura della scuola. Tale potenza richiesta risulta coerente con la potenza massima erogata dal contatore installato e con le utenze elettriche rilevate in fase di sopralluogo.

Tali profili risultano coerenti con l'effettivo utilizzo dell'edificio e delle utenze elettriche presenti.

L'andamento dei consumi elettrici mensili nel triennio di riferimento e di Baseline è riportato nel grafici in Figura 5.5

Figura 5.5 – Confronto tra i profili mensili elettrici reali e i valori di Baseline per il triennio di riferimento

5.2 INDICATORI DI PERFORMANCE ENERGETICI ED AMBIENTALI

L'esito della DE deve inoltre consentire la valutazione del fabbisogno energetico caratteristico del sistema edificio-impianto ed individuare gli indicatori specifici di performance energetica ed ambientale caratteristici della prestazione energetica dell'edificio, rispetto ai consumi energetici reali.

I fattori di emissione di CO_2 utilizzati sono riportati nella Tabella 5.10 - Fattori di emissione di CO_2 . Tabella 5.10.

Tabella 5.10 - Fattori di emissione di CO₂.

COMBUSTIBILE	FATTORE DI CONVERSIONE
	kgCO₂/kWh
Energia elettrica	* 0,467
Gas naturale	* 0,202
GPL	* 0,227
Olio combustibile	* 0,267
Gasolio	* 0,267
Benzina	* 0,249

 $^{^{}st}$ da "Linee Guida Patto dei Sindaci" per anno 2010

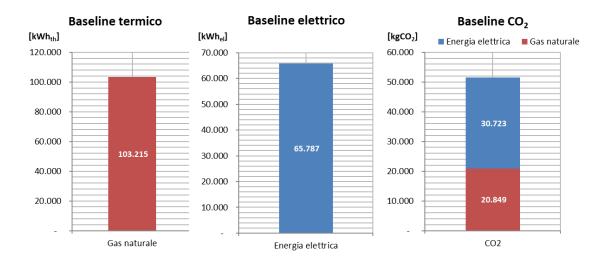

Applicando tali fattori di conversione è stato possibile valutare la Baseline delle emissioni di CO_{2} , come riportato nella Tabella 5.11 – Baseline delle emissioni di CO_{2} . Tabella 5.11 e nella Figura 5.6

Tabella 5.11 – Baseline delle emissioni di CO₂.

COMBUSTIBILE	CONSUMO DI BASELINE	FATTORE DI CONVERSIONE	EMISSIONI DI CO2
	[kWh]	[kgCO ₂ /kWh]	[kgCO ₂]
Gas naturale	103.215	0,202	20.849
Energia elettrica	65.787	0,467	30.723
TOTALE			51.572

Figura 5.6 - Rappresentazione grafica della Baseline dei consumi e delle emissioni di CO2.

Ai fini del calcolo degli indici di performance è necessario effettuare la conversione dei consumi di baseline in energia primaria, utilizzando i fattori di conversione indicati dal Decreto Interministeriale 26 giugno 2015 "Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici" nell'Allegato 1-Tabella 1.

Tabella 5.12 - Fattori di conversione in energia primaria dei vettori energetici

COMBUSTIBILE	F _{P,nren}	F _{P,ren}	F _{P,tot}
Gas naturale	1,05	0	1,05
Energia elettrica da rete	1,95	0,47	2,42

La valutazione degli indicatori di performance è stata effettuata parametrizzando i consumi reali di Baseline di cui al Capitolo 5, in funzione dei fattori riportati nella Tabella 5.13.

Tabella 5.13 – Fattori di riparametrizzazione

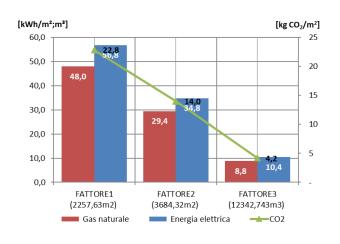
	PARAMETRO	VALORE	U.M.
FATTORE 1	Superficie netta riscaldata	2.258	m²
FATTORE 1	Superficie netta complessiva delle aree interne (riscaldate e non riscaldate)	3.684	m²
FATTORE 1	Volume lordo complessivo (aree interne riscaldate e non riscaldate)	12.343	m³

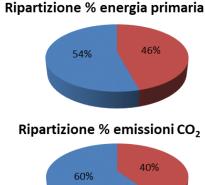
Nella Tabella 5.14 e Tabella 5.15 sono riportati gli indicatori di performance valutati coerentemente con quanto riportato nella sezione 2.5 del'Allegato J – Schede di audit.

Tabella 5.14 – Indicatori di performance calcolati con riferimento all'energia primaria totale

VETTORE ENERGETICO	CONSUMO	ICO ENERGIA	CONSUMO DI ENERGIA		I DI CONSUM IA NON RINN		INDICATORI AMBIENTAI		ΓALI
	ENERGETICO DI BASELINE		PRIMARIA NON RINN.	FATTORE 1	FATTORE 2	FATTORE 3	FATTORE 1	FATTORE 2	FATTORE 3
	[kWh/anno]		[kWh/anno]	[kWh/m²]	[kWh/m²]	[kWh/m³]	[Kg CO ₂ /m²]	[Kg CO ₂ /m ²]	[Kg CO₂/m³]
Gas naturale	103.215	1,05	108.375	48,0	29,4	8,8	9,24	5,66	1,69
Energia elettrica	65.787	2,42	159.205	70,5	43,2	12,9	13,61	8,34	2,49
TOTALE			267.580	119	73	22	23	14	4

Tabella 5.15 – Indicatori di performance calcolati con riferimento all'energia primaria non rinnovabile


VETTORE ENERGETICO	FATTORE DI CONVERSIONE	CONSUMO DI ENERGIA	INDICATORI DI CONSUMO ENERGIA PRIMARIA NON RINNOVABILE	INDICATORI AMBIENTALI



	CONSUMO ENERGETICO DI BASELINE	ENERGIA PRIMARIA NON RINN.	PRIMARIA NON RINN.	FATTORE 1	FATTORE 2	FATTORE 3	FATTORE 1	FATTORE 2	FATTORE 3
	[kWh/anno]		[kWh/anno]	[kWh/m²]	[kWh/m²]	[kWh/m³]	[Kg CO ₂ /m²]	[Kg CO ₂ /m²]	[Kg CO ₂ /m³]
Gas naturale	103.215	1,05	108.375	48,0	29,4	8,8	9,24	5,66	1,69
Energia elettrica	65.787	1,95	128.285	56,8	34,8	10,4	13,61	8,34	2,49
TOTALE			236.660	105	64	19	23	14	4

emissioni di CO2 valutati in funzione della superficie primaria e delle relative emissioni di CO2 utile riscaldata

Figura 5.7 – Indicatori di performance e relative Figura 5.8 – Ripartizione % dei consumi di energia

■ Gas naturale ■ Energia elettrica

Trattandosi di edifici scolastici, in particolare si sono determinati i due seguenti indici, definiti all'interno delle Linee Guida ENEA- FIRE "Guida per il contenimento della spesa energetica nelle scuole"

L'indicatore introdotto dalla Guida ENEA-FIRE si basa sui consumi di energia per gas naturale normalizzati in funzione dei seguenti fattori di aggiustamento:

- Fattore di forma dell'edificio, rapporto fra superficie disperdente e volume riscaldato S/V (fattore
- Ore di occupazione dell'edificio scolastico (fattore F_h);
- Gradi Giorno convenzionali della località (1435 GG) così come definiti D.P.R. 412/93 allegato A
- Volume riscaldato (Vrisc).

La formula definita è sotto riportata:

$$IEN_R = \frac{Consumo_annuo_riscaldamento \times F_e \times F_h \times 1000}{GG \times V_{risc}}$$

L'indicatore di performance energetico definito dalla Guida ENEA - FIRE per i consumi di energia elettrica è un semplice indicatore normalizzato sui seguenti fattori:

- Superficie lorda ai piani dell'edificio A_p;
- Fattore F_h relativo all'orario di occupazione, così come precedentemente

La formula per il calcolo dell'indice è la seguente:

$$IEN_E = \frac{Consumo_energia_elettrica \times F_h}{A_p}$$

Tabella 5.16 – Indicatori di performance energetici

COMBUSTIBILE	IEN _R	IEN _E	
--------------	------------------	------------------	--

	Wh/(m³ GG anno)			Wh/(m³ anno)		
	2014	2015	2016	2014	2015	2016
Gas Naturale	9,53	5,52	5,51	-	-	-
Energia elettrica	-	-	-	15,61	16,36	16,30

E' stato quindi possibile effettuare un raffronto con le classi di merito riportate nelle suddette Linee Guida ENEA - FIRE, ottenendo degli indici di consumo buoni per quanto riguarda il vettore termico mentre per quello elettrico la classificazione è insufficiente.

Il confronto tra i benchmark della scuola oggetto di studio e quelli identificati dall'ENEA sono meglio esplicitati nell'Allegato M – Report di Benchmark

6 MODELLO DEL FABBISOGNO ENERGETICO

6.1 METODOLOGIA DI CALCOLO ADOTTATA E VALIDAZIONE DEI MODELLI DI CALCOLO

Al fine di valutare la prestazione energetica del sistema edificio-impianti è stato necessario predisporre un modello energetico (termico ed elettrico) redatto ai sensi della normativa regionale e nazionale vigente per il calcolo della prestazione energetica degli edifici.

Relativamente all'involucro edilizio esso è stato determinato considerando le composizioni e gli spessori di ciascun elemento opaco e trasparente, i ponti termici e in generale tutti gli elementi che concorrono alla determinazione delle dispersioni e dunque del fabbisogno in accordo alle Norme UNI-TS 11300-1:2014 per il calcolo della prestazione energetica degli edifici.

Gli impianti termici ed elettrici sono stati simulati considerando le caratteristiche dei vari sottosistemi impiantistici presenti, secondo quanto previsto dalle norme UNI-TS 11300-2:2014, UNI-TS 11300-3:2010, UNI-TS 11300-4:2016, UNI-TS 11300-5:2016 e UNI-TS 11300-6:2016.

La creazione di un modello energetico dell'edificio oggetto della DE ha fornito come output un profilo di fabbisogno energetico valutato in condizioni standard di utilizzo dell'edificio come definite dal prospetto 2 della norma UNITS 11300 parte 1, considerando le temperature esterne come definite dalla norma UNI 10349:2016 e con una durata del periodo di riscaldamento come da DPR 74/2013

Nella Tabella 6.1 sono riportati gli indicatori di performance energetica ricavati dalla modellazione dell'edificio.

Tabella 6.1 – Indicatori di performance energetica e ambientali ricavati dalla modellazione (valutazione in modalità standard di utilizzo)

INDICE DI PRESTAZIONE EN	ERGETICA	U.M.	ENERGIA PRIMARIA TOTALE	ENERGIA PRIMARIA NON RINNOVABILE
Globale non rinnovabile	EP _{gl,nren}	kWh/mq anno	184,42	172,21
Climatizzazione invernale	ЕРн	kWh/mq anno	125,31	124,58
Produzione di acqua calda sanitaria	EPw	kWh/mq anno	0,43	0,35
Ventilazione	EP _v	kWh/mq anno	1,65	1,33
Raffrescamento	EPc	kWh/mq anno	8,66	6,98
Illuminazione artificiale	EP∟	kWh/mq anno	46,43	37,41
Trasporto di persone e cose	EP⊤	kWh/mq anno	1,94	1,56
Emissioni equivalenti di CO2	CO _{2eq}	Kg/mq anno	35	35

Gli indici di prestazione energetica sopra riportati corrispondono ad un quantitativo annuo di vettore energetico consumato, riportato nella Tabella 6.2

Tabella 6.2 – Consumo di vettore energetico ricavato dalla modellazione (valutazione in modalità standard di utilizzo)

FONTE ENERGETICA UTILIZZATA	CONSUMO	CONSUMO ENERGIA PRIMARIA NON RINNOVABILE
	[m³/anno]	[kWh/anno]
Gas Naturale	26.907	266.648,37
Energia Elettrica		89.566

Il modello di calcolo utilizzato deve essere validato attraverso il confronto dei fabbisogno energetici risultati dal modello con i consumi energetici di baseline, secondo il seguente criterio di congruità:

$$\frac{\mid E_{teorico} - E_{baseline} \mid}{E_{teorico}} \times 100 \le 5\%$$

Dove:

- E_{teorico} è il fabbisogno teorico di energia dell'edificio, come calcolato dal software di simulazione;
 - Nel caso di consumo termico, E_{teorico} è assunto pari al fabbisogno di energia per la combustione (Q_{gn,in}) così come definito dalla norma UNI TS 11300 parte 2;
 - Nel caso di consumo elettrico, E_{teorico} è assunto pari al fabbisogno complessivo di energia elettrica prelevata dalla rete (EE_{in}) valutata come sommatoria dei contributi riportati nella Tabella 6.3;
- E_{baseline} è il consumo energetico reale di baseline dell'edificio assunto rispettivamente pari al Q_{baseline} e a EE_{baseline}

Tale criterio di congruità deve, pertanto, essere soddisfatto sia per il consumo termico, che per il consumo elettrico.

Tabella 6.3 – Elenco dei fabbisogni che contribuiscono alla valutazione del fabbisogno complessivo di energia elettrica prelevata dalla rete

FABBISOGNO	Corrispondenza UNI TS 11300
	[kWhel]
Energia ausiliaria complessiva assorbita dal sottosistema di generazione per la produzione di ACS	Ew, aux, gn
Energia ausiliaria complessiva assorbita dal sottosistema di generazione per il riscaldamento	EH, aux, gn
Fabbisogno di energia elettrica dell'impianto di ventilazione meccanica e dei terminali di emissione	E _{ve,el} + E _{aux,e}
Fabbisogno di energia elettrica per gli ausiliari di distribuzione (Riscaldamento e ACS)	Ew, aux, d + Ew, aux, d
Fabbisogno di energia elettrica per l'illuminazione interna dell'edificio	E _{L,int}
Fabbisogno di energia elettrica per gli ausiliari degli impianti di climatizzazione	Q _{c,aux}
Fabbisogno di energia elettrica per i sistemi di trasporto (+ eventuali altri carichi interni)	E _T + E _{altro} (*)
Energia elettrica esportata dall'impianto a fonti rinnovabili	E _{exp,el}

6.1.1 Validazione del modello termico

A seguito della realizzazione del modello valutato secondo le modalità "Standard" di utilizzo (Asset Rating), si è provveduto ad effettuare una modellazione dell'edificio in modalità "Adattata all'utenza" (Tailored Rating) così come definita al prospetto 2 della UNI TS 11300-1:2014.

Si è quindi provveduto alla simulazione dei parametri reali di utilizzo dell'edificio considerando gli effettivi giorni di utilizzo del fabbricato e cercando di modellare quanto più fedelmente i profili di funzionamento delle utenze elettriche e le modalità di accensione e set point dei sistemi di climatizzazione.

Nella Tabella 6.4 sono riportati gli indicatori di performance energetica ricavati dalla modellazione dell'edificio in modalità "Adattata all'utenza".

Tabella 6.4 – Indicatori di performance energetica ricavati dalla modellazione (valutazione in modalità adattata all'utenza)

INDICE DI PRESTAZIONE EN	ERGETICA	U.M.	ENERGIA PRIMARIA TOTALE	ENERGIA PRIMARIA NON RINNOVABILE
Globale non rinnovabile	EP _{gl,nren}	kWh/mq anno		
Climatizzazione invernale	ЕРн	kWh/mq anno	52,12	51,78
Produzione di acqua calda sanitaria	EPw	kWh/mq anno	0,36	0,29
Ventilazione	EΡ _v	kWh/mq anno	1,67	1,35
Raffrescamento	EPc	kWh/mq anno	0.770	0,621

Illuminazione artificiale	EP∟	kWh/mq anno	21,70	17,48
Trasporto di persone e cose	EP⊤	kWh/mq anno	2,03	1,64
Emissioni equivalenti di CO2	CO _{2eq}	Kg/mq anno	17	17

Gli indici di prestazione energetica sopra riportati corrispondono ad un quantitativo annuo di vettore energetico consumato, riportato nella Tabella 6.5.

Tabella 6.5 – Consumo di vettore energetico ricavato dalla modellazione (valutazione in modalità adattata all'utenza)

FONTE ENERGETICA UTILIZZATA	CONSUMO	CONSUMO
	[mc/anno]	[kWh/anno]
Gas Naturale	11.421	107.589
Energia Elettrica		63.038

La validazione del modello energetico termico è stata effettuata confrontando il consumo energetico di baseline ($Q_{baseline}$) così come definito al precedente capitolo 5.1.1 ed il fabbisogno teorico ($Q_{teorico}$) derivante dalla modellazione energetica.

Tabella 6.6 – Validazione del modello energetico termico (valutazione adattata all'utenza)

Q _{teorico}		$\mathbf{Q}_{baseline}$	Congruità
[kWh/anno]		[kWh/anno]	[%]
	107.589	103.215	4%

Dall'analisi effettuata è emerso che il modello valutato in "Modalità adattata all'utenza" risulta validato.

6.1.2 Validazione del modello elettrico

La validazione del modello energetico elettrico è stata effettuata confrontando il consumo energetico di baseline (EE_{baseline}) così come definito al precedente capitolo 5.1.2 ed il fabbisogno teorico (EE_{teorico}) derivante dalla modellazione energetica.

Tabella 6.7 – Validazione del modello energetico elettrico (valutazione in modalità adattata all'utenza)

EE _{teorico}	EE baseline	Congruità
[kWh/anno]	[kWh/anno]	[%]
63.035	66.787	4%

Dall'analisi effettuata è emerso che il modello risulta validato.

Il dettaglio dei calcoli elettrici è presente nell'Allegato B – Elaborati.

6.2 FABBISOGNI ENERGETICI

Al fine di valutare la prestazione energetica del sistema edificio-impianti si è reso necessario predisporre i risultati della modellazione energetica nella forma di un bilancio energetico che descriva l'andamento dei flussi energetici caratteristici dell'edificio in modo da valutare in maniera puntuale i consumi specifici, le criticità e gli interventi da considerare, sia per quanto riguarda il bilancio termico, sia per quanto riguardo il bilancio elettrico.

A conclusione della procedura di calcolo del fabbisogno di energia primaria, i risultati del bilancio energetico sono quindi stati rappresentati mediante diagrammi di Sankey.

I risultati del bilancio energetico termico sono stati rappresentati nella forma di diagramma di Sankey riportato in Figura 6.1

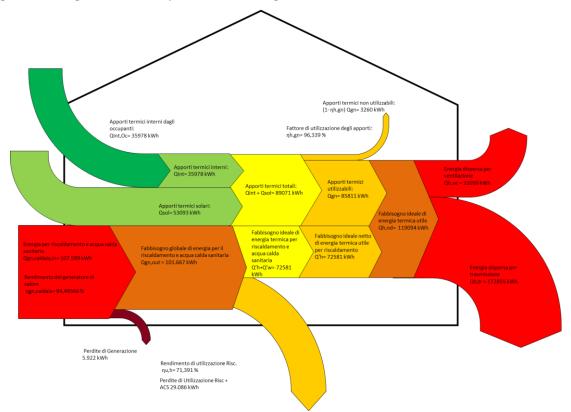


Figura 6.1 – Diagramma di Sankey relativo al fabbisogno termico dell'edificio allo stato attuale

E' quindi possibile creare un bilancio energetico complessivo dell'edificio, riportato nella Figura 6.2.

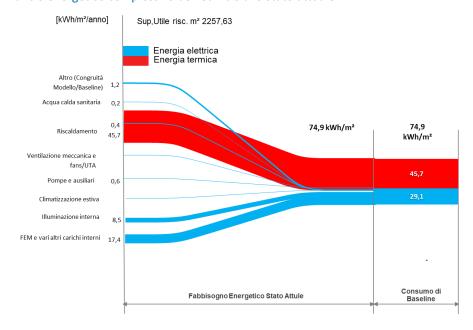


Figura 6.2 – Bilancio energetico complessivo dell'edificio allo stato attuale

I consumi specifici rappresentati a bilancio sono valori indicizzati in kWh/(m² anno), sulla base delle superfici utili delle zone riscaldate.

Il contributo definito come "Altro – Congruità" è valutato in due modi differenti a seconda che i consumi teorici ricavati dalla modellazione siano sovrastimati o meno rispetto alla Baseline.

Non sono stati considerati gli apporti interni delle apparecchiature presenti in quanto trascurabili ai fini del calcolo degli apporti interni totali.

Nel caso in cui i consumi teorici ricavati dalla modellazione siano sovrastimati rispetto alla Baseline, i consumi specifici riportati nel diagramma vengono rappresentati come dei consumi normalizzati alla baseline.

Nel caso in cui, invece i consumi teorici siano inferiori rispetto alla Baseline il termine "Altro – Congruità" rappresenta la differenza per eccesso tra i consumi specifici di Baseline ed i consumi teorici.

6.3 PROFILI ENERGETICI MENSILI

La creazione di un modello energetico consente di effettuare una più corretta ripartizione dei consumi energetici di Baseline in funzione dei diversi utilizzi presenti all'interno dell'edificio oggetto della DE. Tale profilo può essere confrontato con il profilo mensile del che si otterrebbe tramite la normalizzazione dei consumi di Baseline attraverso l'utilizzo dei GG di riferimento di cui al Capitolo 3.1.

Il confronto tra i due profili è riportato in Figura 6.3.

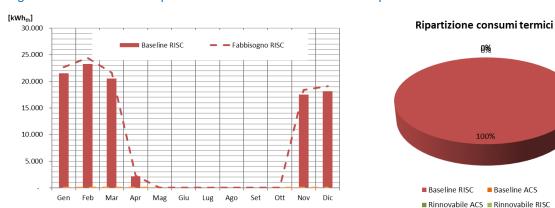
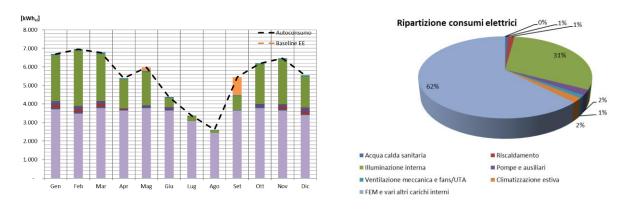


Figura 6.3 – Confronto tra il profilo mensile del Baseline Termico e il profilo mensile dei GG rif

Si può notare come la maggior parte dei consumi termici sia da attribuirsi all'utilizzo per la climatizzazione dei locali, pertanto gli interventi migliorativi proposti, andranno ad interessare principalmente tali componenti.


Anche relativamente all'analisi dei fabbisogni di energia elettrica, la ripartizione tra i vari utilizzi è stata effettuata in funzione degli esiti della modellazione.

Si è inoltre effettuato un confronto grafico tra i profili mensili ottenuti dalla modellazione elettrica ed i profili mensili di Baseline.

I risultati di tale valutazione sono riportati nella Figura 6.4.

Figura 6.4 – Andamento mensile dei consumi elettrici ricavati dalla modellazione energetica, ripartiti tra i vari utilizzi

Si può notare come la maggior parte dei consumi sia da attribuirsi alla forza motrice utilizzata per le utenze della mensa e successivamente per l'illuminazione.

7 ANALISI DEI COSTI PRE-INTREVENTO

7.1 COSTI RELATIVI ALLA FORNITURA DEI VETTORI ENERGETICI

L'analisi dei costi relativi alla fornitura dei vettori energetici dell'edificio riguarda le annualità per le quale sono stati rilevati i consumi storici, pertanto si assumono come periodo di riferimento gli anni 2014 – 2015 – 2016.

7.1.1 Vettore termico

La fornitura del vettore termico avviene tramite due contratti differenti per i due PDR presenti all'interno dell'edificio, come di seguito elencato:

- PDR 1 016220050595481: contratto di Servizio Integrato Energia 3 (SIE3) stipulato dalla PA con un soggetto terzo, comprensivo sia la fornitura del vettore energetico che la conduzione e manutenzione degli impianti. Non è stato quindi possibile effettuare un'analisi dei costi di fatturazione del vettore energetico in quanto tali fatture non sono a disposizione della PA;
- PDR 2 03270009562239: contratto di fornitura del solo vettore energetico, stipulato direttamente dalla PA con la società di fornitura.

Nella Tabella 7.1 si riportano le principali caratteristiche del contratto di fornitura del vettore termico per gli anni di riferimento.

Tabella 7.1 – Caratteristiche dei contratti di fornitura del vettore termico per il triennio di riferimento

PDR: 03270009562239	2014	2015	2016		
Indirizzo di fornitura					
Dati di intestazione fattura	Comune di Genova	. Patrimonio, demanio e sp	oort. Via Francia n.1		
Società di fornitura	IREN Mercato SpA	Eni SpA	Energetic SpA		
Inizio periodo fornitura	nd	04/2015	04/2016		
Fine periodo fornitura	fino a 03/2015	03/2016	In essere		
Classe del contatore		CLASSE G004	-		
Tipologia di contratto	mercato libero	o - Utente con attività di se	rvizio pubblico		
Opzione tariffaria (14)		Prodotto CONSIP 7 GAS			
Valore del coefficiente correttivo dei consumi	1,023328				
Potere calorifico inferiore convenzionale del combustibile		9,42			
Prezzi di fornitura del combustibile (15) (IVA ESCLUSA)	nd	0,31 €/smc	0,23 €/smc		

Nota (14) per fatturazioni non mensili la spesa economica mensile andrà calcolata suddividendo percentualmente la spesa aggregata in base ai valori di consumo energetico mensile.

Nota (15): con prezzo di fornitura s'intende soltanto la quota variabile del servizio di acquisto e vendita, sono escluse le imposte, i corrispettivi per il dispacciamento e lo sbilanciamento, per l'uso della rete, e il servizio di misura e ogni altra voce.

Nella Tabella 7.2 si riporta l'andamento del costo del vettore termico nel triennio di riferimento, suddiviso nelle varie componenti.

Tabella 7.2 – Andamento del costo del vettore termico nel triennio di rierimento

PDR: 03270009562239	QUOTA ENERGIA	ONERI DI SISTEMA PARTE FISSA	ONERI DI SISTEMA PARTE VARIABILE	IMPOSTE	IVA	TOTALE	CONSUMO FATTURATO	COSTO UNITARIO (IVA INCLUSA)
ANNO 2015	[€]	[€]	[€]	[€]	[€]	[€]	[KWH]	[€/kWh]
Gennaio	47	4	15	17	8	91	1.017	0,089
Febbraio	47	4	15	17	8	91	1.017	0,089
Marzo	47	4	15	17	8	91	1.017	0,089
Aprile	13	4	16	27	6	66	443	0,150
Maggio	13	4	16	27	6	67	452	0,147

Giugno	13	4	16	27	6	66	443	0,150
Luglio	13	4	14	23	5	59	462	0,127
Agosto	13	4	14	22	5	58	452	0,128
Settembre	13	4	15	24	6	61	443	0,139
Ottobre	13	4	18	29	6	70	462	0,151
Novembre	12	4	19	32	7	75	443	0,169
Dicembre	13	4	21	39	8	84	452	0,185
Totale	258	46	194	300	80	878	7.103	0,124
PDR: 03270009562239	QUOTA ENERGIA	ONERI DI SISTEMA PARTE FISSA	ONERI DI SISTEMA PARTE VARIABILE	IMPOSTE	IVA	TOTALE	CONSUMO FATTURATO	COSTO UNITARIO (IVA INCLUSA)
ANNO 2016	[€]	[€]	[€]	[€]	[€]	[€]	[KWH]	[€/kWh]
Gennaio	45	4	13	21	8	91	678	0,134
Febbraio	44	4	17	16	8	88	1.667	0,053
Marzo	42	4	24	34	10	113	1.592	0,071
Aprile	29	4	20	30	8	91	716	0,128
Maggio	5	3	3	5	2	18	245	0,072
Giugno	5	3	3	5	2	17	226	0,073
Luglio	4	3	3	4	1	15	198	0,076
Agosto	4	3	3	4	1	15	198	0,076
Settembre	5	3	3	5	2	17	226	0,074
Ottobre	4	3	2	3	0	12	170	0,073
Novembre	24	3	11	20	0	58	951	0,061
Dicembre	34	3	17	29	0	82	1.375	0,060
Totale	245	35	119	175	44	617	8.243	0,075

Per le forniture di gas metano gestite tramite il Contratto di Servizio Energia SIE3, non essendo disponibile la fatturazione, è stato considerato il costo unitario del vettore termico definito dall' ARERA per le mensilità dell'anno 2017 per cui è stato possibile ricavare i costi unitari forniti.

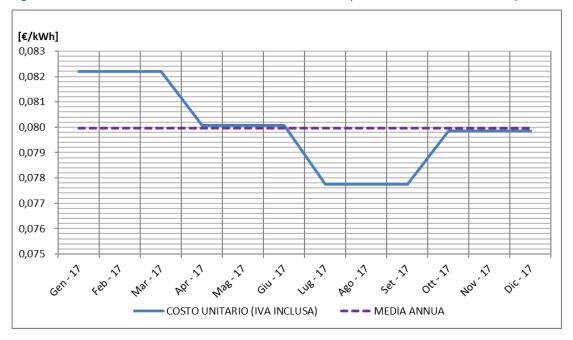


Figura 7.1 – Andamento del costo unitario del vettore termico per il triennio di riferimento e per il 2017

7.1.2 Vettore elettrico

La fornitura del vettore elettrico avviene tramite un unico POD presente all'interno dell'edificio, POD – IT001E00096317: contratto di fornitura del vettore energetico, stipulato direttamente dalla PA con la società di fornitura. È stato quindi possibile effettuare un'analisi di dettaglio dei costi fatturati e delle caratteristiche del contratto di fornitura.

Nella Tabella 7.3 si riportano le principali caratteristiche del contratto di fornitura del vettore termico per gli anni di riferimento.

Tabella 7.3 – Carataeristiche dei contratti di fornitura del vettore elettrico per il triennio di rierimento

POD: IT001E00096317	2014	2015	2016
Indirizzo di fornitura			
Dati di intestazione fattura	Comune di Genova.	Patrimonio, demanio e s	port. Via Francia n.1
Società di fornitura	Edison Energia SpA	Gala SpA	IREN Mercato SpA
Inizio periodo fornitura	01/2014	04/2015	04/2016
Fine periodo fornitura	03/2015	03/2016	In essere
Potenza elettrica impegnata			•
Potenza elettrica disponibile		70kW	
Tipologia di contratto		Fornitura BT	
Opzione tariffaria (16)		Contatore orario	
Prezzi del fornitura dell'energia elettrica (17) (IVA ESCLUSA)	0,076€/kWh	0,070€/kWh	0,0608€/kWh

Nota (16) per fatturazioni non mensili la spesa economica mensile andrà calcolata suddividendo percentualmente la spesa aggregata in base ai valori di consumo energetico mensile.

Nota (17): con prezzo di fornitura s'intende soltanto la quota variabile del servizio di acquisto e vendita, sono escluse le imposte, i corrispettivi per il dispacciamento e lo sbilanciamento, per l'uso della rete, e il servizio di misura e ogni altra voce.

Nella Tabella 7.4 si riporta l'andamento del costo del vettore elettrico nel triennio di riferimento, suddiviso nelle varie componenti.

Tabella 7.4 – Andamento del costo del vettore elettrico nel triennio di rierimento

POD: IT001E00096317	QUOTA ENERGIA	ONERI DI SISTEMA	ONERI DI SISTEMA PARTE	IMPOSTE	IVA	TOTALE	CONSUMO FATTURATO	COSTO UNITARIO
		PARTE FISSA	VARIABILE					(IVA INCLUSA)
ANNO 2014	[€]	[€]	[€]	[€]	[€]	[€]	[KWH]	[€/kWh]
Gen - 14	524	81	614	85	130	1.434	6.769	0,212
Feb - 14	532	90	613	85	132	1.452	6.830	0,213
Mar - 14	483	82	559	78	120	1.322	6.220	0,212
Apr - 14	422	98	518	69	111	1.217	5.501	0,221
Mag - 14	427	97	516	69	111	1.220	5.549	0,220
Giu - 14	317	73	410	52	85	938	4.176	0,225
Lug - 14	223	52	288	37	60	660	2.939	0,225
Ago - 14	173	40	231	30	47	522	2.421	0,216
Set - 14	402	86	494	66	105	1.152	5.259	0,219
Ott - 14	464	90	583	76	121	1.334	6.049	0,221
Nov - 14	452	89	584	75	120	1.320	5.997	0,220
Dic - 14	444	91	595	76	121	1.327	6.112	0,217
Totale	4.862	969	6.005	798	1.263	13.898	63.822	0,218
POD:	QUOTA	ONERI DI SISTEMA	ONERI DI SISTEMA	IMPOSTE	IVA	TOTALE	CONSUMO FATTURATO	COSTO UNITARIO
POD: IT001E00096317	QUOTA ENERGIA			IMPOSTE	IVA	TOTALE		
		SISTEMA	SISTEMA PARTE	IMPOSTE [€]	IVA [€]	TOTALE [€]		UNITARIO
IT001E00096317	ENERGIA	SISTEMA PARTE FISSA	SISTEMA PARTE VARIABILE				FATTURATO	UNITARIO (IVA INCLUSA)
IT001E00096317 ANNO 2015	ENERGIA [€]	SISTEMA PARTE FISSA [€]	SISTEMA PARTE VARIABILE [€]	[€]	[€]	[€]	FATTURATO [KWH]	UNITARIO (IVA INCLUSA) [€/kWh]
IT001E00096317 ANNO 2015 Gen - 15	ENERGIA [€] 517	SISTEMA PARTE FISSA [€] 97	SISTEMA PARTE VARIABILE [€] 671	[€] 92	[€] 138	[€] 1.515	[KWH]	UNITARIO (IVA INCLUSA) [€/kWh] 0,206
ANNO 2015 Gen - 15 Feb - 15	[€] 517 506	SISTEMA PARTE FISSA [€] 97 101	SISTEMA PARTE VARIABILE [€] 671 683	[€] 92 94	[€] 138 138	[€] 1.515 1.521	[KWH] 7.350 7.506	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203
ANNO 2015 Gen - 15 Feb - 15 Mar - 15	ENERGIA [€] 517 506 495	SISTEMA PARTE FISSA [€] 97 101 102	SISTEMA PARTE VARIABILE [€] 671 683 690	[€] 92 94 94	[€] 138 138 138	[€] 1.515 1.521 1.520	[KWH] 7.350 7.506 7.636	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15	ENERGIA [€] 517 506 495 256	SISTEMA PARTE FISSA [€] 97 101 102 62	SISTEMA PARTE VARIABILE [€] 671 683 690 333	[€] 92 94 94 54	[€] 138 138 138 70	[€] 1.515 1.521 1.520 775	[KWH] 7.350 7.506 7.636 4.306	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Mag - 15	ENERGIA [€] 517 506 495 256 586	SISTEMA PARTE FISSA [€] 97 101 102 62 95	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460	92 94 94 54 74	[€] 138 138 138 138 128	[€] 1.515 1.521 1.520 775 1.337	[KWH] 7.350 7.506 7.636 4.306 5.950	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Mag - 15 Giu - 15	ENERGIA [€] 517 506 495 256 586 433	SISTEMA PARTE FISSA [€] 97 101 102 62 95 81	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328	92 94 94 94 54 74	[€] 138 138 138 70 122 94	[€] 1.515 1.521 1.520 775 1.337 1.039	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Giu - 15 Lug - 15	ENERGIA [€] 517 506 495 256 586 433 370	SISTEMA PARTE FISSA [€] 97 101 102 62 95 81 52	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261	92 94 94 54 74 101 41	[€] 138 138 138 70 122 94 72	[€] 1.515 1.521 1.520 775 1.337 1.039	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Giu - 15 Lug - 15 Ago - 15	ENERGIA [€] 517 506 495 256 586 433 370 135	SISTEMA PARTE FISSA [€] 97 101 102 62 95 81 52 49	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206	92 94 94 94 54 74 101 41 33	[€] 138 138 138 70 122 94 72 42	[€] 1.515 1.521 1.520 775 1.337 1.039 796 465	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242 0,179
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Giu - 15 Lug - 15 Ago - 15 Set - 15	ENERGIA [€] 517 506 495 256 586 433 370 135 227	SISTEMA PARTE FISSA	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206 372	92 94 94 54 74 101 41 33 59	[€] 138 138 138 70 122 94 72 42 72	[€] 1.515 1.521 1.520 775 1.337 1.039 796 465 793	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601 4.698	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242 0,179 0,169
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Giu - 15 Lug - 15 Ago - 15 Set - 15 Ott - 15	ENERGIA [€] 517 506 495 256 586 433 370 135 227 524	SISTEMA PARTE FISSA	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206 372 574	[€] 92 94 94 54 74 101 41 33 59 87	[€] 138 138 138 70 122 94 72 42 72 128	1.515 1.521 1.520 775 1.337 1.039 796 465 793 1.410	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601 4.698 6.920	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242 0,179 0,169 0,204
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Mag - 15 Giu - 15 Lug - 15 Ago - 15 Set - 15 Ott - 15 Nov - 15	ENERGIA [€] 517 506 495 256 586 433 370 135 227 524 306	SISTEMA PARTE FISSA	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206 372 574 589	92 94 94 54 74 101 41 33 59 87	[€] 138 138 138 70 122 94 72 42 72 128 110	1.515 1.521 1.520 775 1.337 1.039 796 465 793 1.410 1.206	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601 4.698 6.920 7.110	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,245 0,179 0,169 0,204 0,170
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Mag - 15 Giu - 15 Lug - 15 Set - 15 Ott - 15 Nov - 15 Dic - 15	ENERGIA [€] 517 506 495 256 586 433 370 135 227 524 306 231	SISTEMA PARTE FISSA [€] 97 101 102 62 95 81 52 49 63 98 112 63	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206 372 574 589 438	92 94 94 94 54 74 101 41 33 59 87 89 66	[€] 138 138 138 70 122 94 72 42 72 128 110 80	1.515 1.521 1.520 775 1.337 1.039 796 465 793 1.410 1.206 878	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601 4.698 6.920 7.110 5.284	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242 0,179 0,169 0,204 0,170 0,166
IT001E00096317 ANNO 2015 Gen - 15 Feb - 15 Mar - 15 Apr - 15 Mag - 15 Giu - 15 Lug - 15 Set - 15 Ott - 15 Nov - 15 Dic - 15 Totale	ENERGIA [€] 517 506 495 256 586 433 370 135 227 524 306 231 4.587	SISTEMA PARTE FISSA [€] 97 101 102 62 95 81 52 49 63 98 112 63 975 ONERI DI	SISTEMA PARTE VARIABILE [€] 671 683 690 333 460 328 261 206 372 574 589 438 5.605 ONERI DI	92 94 94 54 74 101 41 33 59 87 89 66 883	[€] 138 138 138 70 122 94 72 42 72 128 110 80 1.205	1.515 1.521 1.520 775 1.337 1.039 796 465 793 1.410 1.206 878 13.255	[KWH] 7.350 7.506 7.636 4.306 5.950 4.248 3.288 2.601 4.698 6.920 7.110 5.284 66.897 CONSUMO	UNITARIO (IVA INCLUSA) [€/kWh] 0,206 0,203 0,199 0,180 0,225 0,245 0,242 0,179 0,169 0,204 0,170 0,166 0,198 COSTO

Gen - 16	424	100	468	76	107	1.174	6.075	0,193
Feb - 16	376	111	516	84	109	1.195	6.697	0,178
Mar - 16	344	102	506	82	103	1.138	6.571	0,173
Apr - 16	322	140	444	79	99	1.085	6.348	0,171
Mag - 16	367	144	450	80	104	1.146	6.437	0,178
Giu - 16	277	118	324	57	78	854	4.580	0,186
Lug - 16	269	87	262	46	66	730	3.677	0,199
Ago - 16	167	61	188	32	45	493	2.586	0,191
Set - 16	524	157	452	83	122	1.337	6.409	0,209
Ott - 16	462	138	398	71	107	1.176	5.650	0,208
Nov - 16	522	156	450	83	121	1.332	6.385	0,209
Dic - 16	445	139	369	65	102	1.120	5.227	0,214
Totale	4.499	1.452	4.828	839	1.162	12.779	66.642	0,192

Nel grafico in Figura 7.2 è riportato l'andamento del costo unitario del vettore elettrico nel triennio di riferimento e per le mensilità dell'anno 2017 per cui è stato possibile ricavare i costi unitari forniti dall'AEEGSI.

Figura 7.2 – Andamento del costo unitario del vettore elettrico per il triennio di riferimento e per il 2017

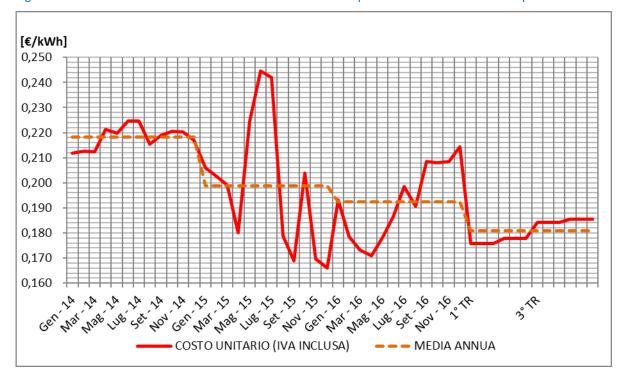
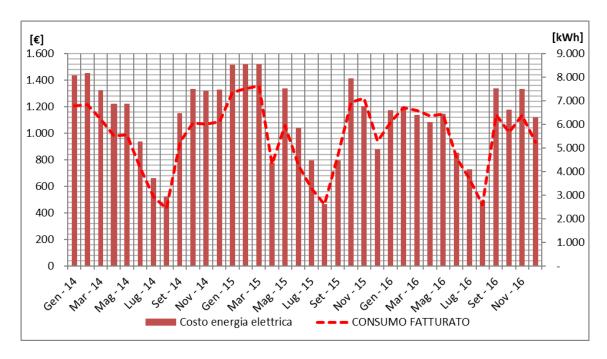



Figura 7.3 – Andamento dei consumi e dei costi dell'energia elettrica

Dall'analisi effettuata risulta evidente che l'andamento dei costi, ad eccezione dell'anno 2014, è omogeneo tra le quattro annualità considerate.

7.2 TARIFFE E PREZZI VETTORI ENERGETICI UTILIZZATI NELL'ANALISI

La valutazione dei costi consente l'individuazione delle tariffe utili – intesi come costi unitari o complessivi al netto della sola IVA – per la realizzazione dell'analisi costi-benefici.

Nella Tabella 7.5 sono sintetizzati i costi ed i consumi energetici precedentemente analizzati.

Tabella 7.5 – Sintesi dei consumi nel triennio di riferimento

ANNO	NO VETTORE TERMICO			VETTORE ELET	TOTALE		
	[kWh]	[€]	[€/kWh]	[kWh]	[€]	[€/kWh]	[€]
2014	-			63.822	13.898	0,218	nd
2015	99.730	nd	-	66.897	13.255	0,198	nd
2016	103.498	nd	-	66.642	12.779	0,192	nd
2017	-		0,0814	-		0,180	

Ai fini del calcolo della Baseline dei costi si sono pertanto assunti i valori di riportati nella Tabella 7.6.

Tabella 7.6 – Valori di costo individuati per il calcolo della Baseline

Definizione			Valore	U.M.
Costo unitario dell'energia termica	Valore relativo all'ultimo anno a disposizione	Cuq	0,0814	[€/kWh]
Costo unitario dell'energia elettrica	Valore relativo all'ultimo anno a disposizione	Cu _{EE}	0,180	[€/kWh]

Tutti i costi indicati sono da considerarsi al lordo dell'IVA.

7.3 COSTI DI GESTIONE E MANUTENZIONE DI EDIFICIO ED IMPIANTI

Il contratto di conduzione e manutenzione dell'impianto termico definisce per l'edificio oggetto della DE un canone annuale relativo alla conduzione e gestione dell'impianto termico, comprensiva della manutenzione ordinaria, preventiva, programmata e straordinaria, relativa ai seguenti impianti:

L1-042-053

Facendo riferimento al capitolo 5 del Capitolato Tecnico della convenzione per l'affidamento del servizio integrato energia per le pubbliche amministrazioni ai sensi dell'art. 26 legge n. 488/1999 e s.m.i. e dell'art. 58 legge n. 388/2000, dove sono descritte nel dettaglio le caratteristiche del servizio di "Gestione, Conduzione e Manutenzione", si deduce che i servizi compresi all'interno della componente manutentiva riguardano:

- 1) Gestione e conduzione degli impianti, comprensivo del servizio di terzo responsabile;
- 2) Manutenzione ordinaria degli impianti:
- Manutenzione Preventiva,
- Manutenzione Correttiva a guasto (con servizio di reperibilità e pronto intervento);
- 3) Manutenzione straordinaria:
- Interventi di adeguamento normativo;
- Interventi di riqualificazione energetica.

Tali servizi prevedono il pagamento di un canone annuale da parte della PA pari a 21.068€.

Nel caso di impianti su cui è attivo il Servizio A all'interno del vigente contratto SIE3, i costi di manutenzione C_M sono stimati come segue:

$$C_M = C_{SIE3} - C_Q$$
;

e sono ripartiti in una quota ordinaria (C_{MO}) e in una quota straordinaria (C_{MS}) come segue:

$$C_{MS} = 0.21 \times C_{M}$$

 $C_{MO} = 0.79 \times C_{M}$

Ai fini del calcolo della Baseline dei costi si sono pertanto assunti i valori di riportati nella Tabella 7.7.

Tabella 7.7 – Valori di costo manutentivi individuati per il calcolo della Baseline

Definizione			Valore	U.M.
Costo per la gestione e manutenzione ordinaria	Corrispettivo annuale relativo al contratto O&M in essere	CMo	12.671	[€/anno]
Costo per la manutenzione straordinaria	Media relativa a gli stessi anni considerati per il rilevamento dei consumi storici	CMs	10.010	[€/anno]

Tutti i costi indicati sono da considerarsi al lordo dell'IVA.

7.4 BASELINE DEI COSTI

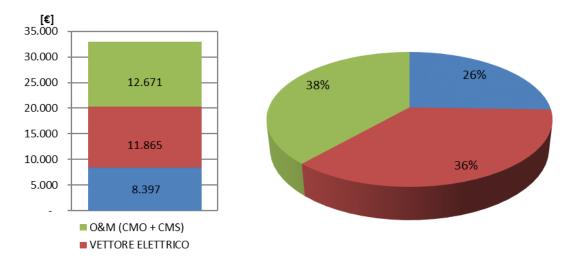
I costi unitari dei vettori energetici precedentemente individuati, devono essere moltiplicati per i consumi normalizzati di baseline al fine di definire la baseline dei costi energetici, che verrà utilizzata per la definizione dei risparmi economici conseguibili a seguito della realizzazione delle EEM proposte.

La Baseline dei Costi è quindi definita come la somma della componente di costo di riferimento per la fornitura dei vettori energetici pre-intervento e la componente di costo di riferimento per la gestione e manutenzione ordinaria e straordinaria pre-intervento.

Per la componente energetica vale la seguente formula:

$$C_E = Q_{baseline} \times Cu_Q + EE_{baseline} \times Cu_{EE}$$

La Baseline dei Costi per il sistema edificio/impianti pre-intervento è pertanto uguale a:


$$C_{baseline} = C_E + C_{MO} + C_{MS}$$

Ne risulta quindi un C_E pari a 20.262 € e un C_{baseline} pari a 32.933 €.

Tabella 7.8 – Valori di costo individuati per il calcolo della Baseline

VET	TORE TERMIC	0	VET	TORE ELETTR	ICO	08	kM (C _{MO} + C _{MS}	;)	TOTALE
Q _{baseline}	Cuq	CQ	EE _{baseline}	Cu _{EE}	C _{EE}	См	Смо	C _{MS}	CQ+CEE+CM
[kWh]	[€/kWh]	[€]	[kWh]	[€/kWh]	[€]	[€]	[€]	[€]	[€]
103.215	0,081	8.397	65.787	0,180	11.865	12.671	10.010	2.661	32.933

Figura 7.4 – Baseline dei costi e loro ripartizione

8 IDENTIFICAZIONE DELLE MISURE DI EFFICIENZA ENERGETICA

8.1 DESCRIZIONE, FATTIBILITÀ E PRESTAZIONI DEI SINGOLI INTERVENTI MIGLIORATIVI

Gli interventi di efficientamento definiti per l'edificio oggetto di analisi sono stati individuati prendendo in considerazione due principali fattori: l'incidenza che gli interventi avrebbero sul bilancio energetico globale del fabbricato ed il costo a questi associato. Non è stata presa in considerazione la realizzazione di interventi di efficientamento dell'impianto di produzione di ACS poiché l'incidenza sul totale dei consumi è risultata essere limitata.

8.1.1 Involucro edilizio

EEM3: Isolamento a cappotto della muratura esterna

Generalità

La misura proposta prevede la realizzazione di un sistema di isolamento a cappotto della muratura esterna, così da limitare le dispersioni di calore verso l'esterno del fabbricato limitando al massimo i ponti termici della struttura.

Figura 8.1 - Particolare muratura esterna

Caratteristiche funzionali e tecniche

Se il pannello viene posizionato all'esterno secondo il "sistema a cappotto" i ponti termici possono essere eliminati e con essi la formazione di condensa, muffe e macchie. I muri svolgono la funzione di volano termico, accumulando calore e cedendolo lentamente, riducendo quindi le ore di funzionamento dell'impianto di riscaldamento e migliorando l'inerzia termica anche nelle stagioni più calde e soleggiate. Inoltre limitando le dilatazioni termiche, si riducono i movimenti interstrutturali degli edifici evitando così il generarsi di fessurazioni.

I materiali maggiormente utilizzati per questa tipologia di installazione sono polistirene, poliuretani e lane di roccia sotto forma di pannelli rigidi di vario spessore, in funzione del livello di trasmittanza termica che si vuole raggiungere.

Descrizione dei lavori

Per eseguire una posa del cappotto a regola d'arte è necessario fissare al muro, tramite tasselli ad espansione, le basi di partenza; è poi necessario selezionare un collante idoneo per isolamento termico a cappotto, questo si applicherà con il sistema a cordolo e tre punti centrali, oppure su supporti complanari, con il sistema del collaggio totale con spatola in acciaio inox dentata.

Il collante deve ricoprire almeno il 40% della superficie totale del pannello isolante.

Durante la posa i pannelli isolanti devono essere posati a "mattoncino", sfalsati di almeno 25 cm partendo dal basso verso l'alto. Eventuali giunti aperti tra le lastre (<5mm) dovranno essere colmati con adeguata schiuma espansa.

I tasselli per l'ancoraggio meccanico, dove necessari, devono essere applicati a due o tre giorni di distanza dalla posa dei pannelli in EPS(10cm). Durante la posa del cappotto termico i tasselli vanno invece applicati immediatamente in caso di pannelli in EPS con aggiunta di grafite o pannelli in fibra di legno.

Dopo un periodo di tre, dieci giorni, si applica una prima rasatura di adesivo rasante cui, una volta asciutto, seguirà l'applicazione del primer.

Il rivestimento della facciata deve essere di 1,2 o 1,5 millimetri e deve essere applicato con temperature e umidità idonee, di colore chiaro, usando prodotti vernicianti con indice di riflessione superiore al 25%. La posa del cappotto termico si conclude infine con l'applicazione di accessori dedicati quali il nastro autoespandente, il profilo per davanzale, giunti di dilatazione.

Prestazioni raggiungibili

I miglioramenti ottenibili tramite l'attuazione della EEM3 sono riportati nella Tabella 8.1e nella Figura 8.2.

Tabella 8.1 - Risultati analisi EEM3 - Cappotto Termico

CALCOLO RISPARMIO	U.M.	ANTE-INTERVENTO	POST-INTERVENTO	RIDUZIONE DAL BASELINE
EM3 [Trasmittanza parete verticale]	[W/mqK]	1,7	0,26	84,7%
Q _{teorico}	[kWh]	107.589	63.836	40,7%
EEteorico	[kWh]	63.035	53.263	15,5%
Q _{baseline}	[kWh]	103.215	61.241	40,7%
EE _{Baseline}	[kWh]	65.787	55.588	15,5%
Emiss. CO2 Termico	[kgCO ₂]	20.849	12.371	40,7%
Emiss. CO2 Elettrico	[kgCO ₂]	30.723	25.960	15,5%
Emiss. CO2 TOT	[kgCO ₂]	51.572	38.330	25,7%
Fornitura Termica, C _Q	[€]	8.396	4.982	40,7%
Fornitura Elettrica, C_{EE}	[€]	11.868	10.028	15,5%
Fornitura Energia, CE	[€]	20.264	15.010	25,9%
C _{MO}	[€]	10.011	10.011	0,0%
C _{MS}	[€]	2.661	2.661	0,0%
O&M (C _{MO} + C _{MS})	[€]	12.672	12.672	0,0%
OPEX	[€]	32.936	27.682	16,0%
Classe energetica	[-]	D	С	+1 Classe

Nota (18) I fattori di emissione per il calcolo delle emissioni ci CO2 sono: 0,202 [kgCO2/kWh] per il vettore termico e 0,467 [kgCO2/kWh] per il vettore elettrico. I costi unitari dei vettori energetici utilizzati sono: 0,079 [€/kWh] per il vettore termico e 0,181 [€/kWh] per il vettore elettrico

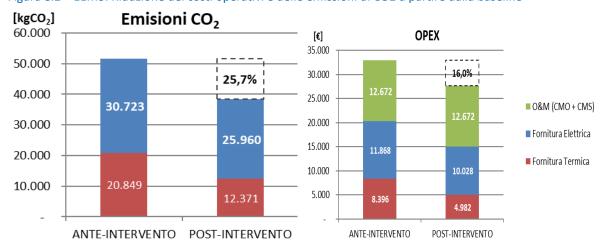


Figura 8.2 – EEM3: Riduzione dei costi operativi e delle emissioni di CO2 a partire dalla baseline

8.1.2 Impianto riscaldamento

EEM1: Installazione Termovalvole

Generalità

Uno degli interventi proposti vede l'installazione di valvole termostatiche sui corpi scaldanti presenti all'interno dell'edificio.

L'intervento ha la finalità di rendere maggiormente confortevoli gli ambienti interni del fabbricato, dando la possibilità agli occupanti di definire il livello di temperatura interna desiderato evitando così situazioni di sovrariscaldamento o di scarso comfort termico che spesso si è rilevato durante le attività di sopralluogo.

Prestazioni raggiungibili

I miglioramenti ottenibili tramite l'attuazione della EEM1 sono riportati nella Tabella 8.2 e nella Figura 8.3

Tabella 8.2 – Risultati analisi EEM1 – Installazione termovalvole

CALCOLO RISPARMIO	U.M.	ANTE-INTERVENTO	POST-INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Rendimento di regolazione]	[%]	76,03%	99%	-30,2%
Qteorico	[kWh]	107.589	86.019	20,0%
EE _{teorico}	[kWh]	63.035	62.774	0,4%
Qbaseline	[kWh]	103.215	82.522	20,0%
EEBaseline	[kWh]	65.787	65.515	0,4%
Emiss. CO2 Termico	[kgCO ₂]	20.849	16.669	20,0%
Emiss. CO2 Elettrico	[kgCO ₂]	30.723	30.595	0,4%
Emiss. CO2 TOT	[kgCO ₂]	51.572	47.265	8,4%
Fornitura Termica, CQ	[€]	8.396	6.713	20,0%
Fornitura Elettrica, C _{EE}	[€]	11.868	11.819	0,4%
Fornitura Energia, C _E	[€]	20.264	18.532	8,5%

Смо	[€]	10.011	8.009	20,0 ³ %
C_MS	[€]	2.661	2.661	0,0%
O&M (C _{MO} + C _{MS})	[€]	12.672	10.670	15,8%
OPEX	[€]	32.936	29.202	11,3%
Classe energetica	[-]	D	D	0 classi

Nota (19) I fattori di emissione per il calcolo delle emissioni ci CO2 sono: 0,202 [kgCO2/kWh] per il vettore termico e 0,467 per il vettore elettrico

I costi unitari dei vettori energetici utilizzati sono: 0,081 [€/kWh] per il vettore termico e 0,180 [€/kWh] per il vettore elettrico

OPEX [kgCO₂] Emisioni CO₂ [€] 60.000 35.000 11,3% 30.000 50.000 8,4% 25.000 40.000 O&M (CMO + CMS) 30.723 20.000 30.595 ■ Fornitura Elettrica 30.000 15.000 11.868 11.819 ■ Fornitura Termica 20.000 10.000 10.000 20.849 5.000 16.669 8.396 6.713 ANTE-INTERVENTO POST-INTERVENTO ANTE-INTERVENTO POST-INTERVENTO

Figura 8.3 – EEM1: Riduzione dei costi operativi e delle emissioni di CO2 a partire dalla baseline

8.1.3 Impianto di illuminazione ed impianto elettrico

EEM2: Sostituzione Corpi illuminanti

Generalità

Durante le attività di sopralluogo svolte sono stati rilevati tutti i corpi di illuminazione presenti nell'edificio, per la quasi totalità di tipo fluorescente. Si propone dunque la sostituzione degli elementi con profili di utilizzo prolungati con soluzioni a LED, così da limitare il consumo di energia elettrica del fabbricato.

Caratteristiche funzionali e tecniche

L'intervento riguarda in particolare le aule e gli spazi comuni dell'edificio, come atrii e corridoi, caratterizzati da profili di accensione degli apparecchi più prolungati rispetto ad altre zone funzionali, dove si prevede la sostituzione delle lampade esistenti con lampade ad alta efficienza; una maggiore efficienza implica, a parità di lumen, una minore potenza e una riduzione del calore emesso in ambiente.

È consigliabile prevedere un progetto illuminotecnico degli spazi, in modo da comprendere come possa essere gestita l'illuminazione in termini di comfort. Allo stato attuale verrà proposta una sostituzione 1:1 degli elementi presenti.

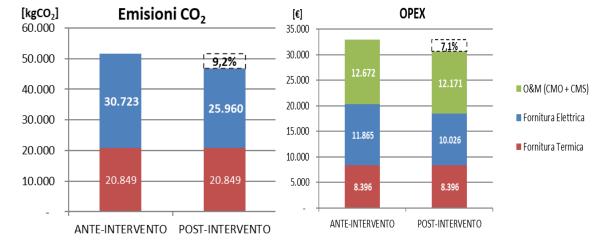
-

³ Oltre ai risparmi riconducibili alla riduzione del consumo energetico è stata considerata una riduzione relativa ai costi manutentivi ad ora sostenuti dalla PA, questo perché la gestione autonoma, da parte degli occupanti, delle condizioni di comfort interno riduce l'intervento straordinario della ditta manutentiva per cambiare le condizioni di settaggio dell'impianto.

Durante il sopralluogo si è infatti rilevata una disomogeneità delle condizioni termiche che porta a condizioni di disconfort in parte dei locali della scuola.

Prestazioni raggiungibili

I miglioramenti ottenibili tramite l'attuazione della EEM2 sono riportati nella Tabella 8.3 e nella Figura 8.4.


Tabella 8.3 – Risultati analisi EEM2 – Sostituzione corpi illuminanti

CALCOLO RISPARMIO	U.M.	ANTE-INTERVENTO	POST-INTERVENTO	RIDUZIONE DAL BASELINE
EM2 [Potenza corpi illuminanti]	[W]	116	48	58,6%
Qteorico	[kWh]	107.589	107.589	0,0%
EE _{teorico}	[kWh]	63.035	53.263	15,5%
Qbaseline	[kWh]	103.215	103.215	0,0%
EEBaseline	[kWh]	65.787	55.588	15,5%
Emiss. CO2 Termico	[kgCO ₂]	20.849	20.849	0,0%
Emiss. CO2 Elettrico	[kgCO ₂]	30.723	25.960	15,5%
Emiss. CO2 TOT	[kgCO ₂]	51.572	46.809	9,2%
Fornitura Termica, Cq	[€]	8.396	8.396	0,0%
Fornitura Elettrica, C _{EE}	[€]	11.865	10.026	15,5%
Fornitura Energia, C _E	[€]	20.261	18.422	9,1%
Смо	[€]	10.011	9.510	5,0 ⁴ %
C _{MS}	[€]	2.661	2.661	0,0%
O&M (C _{MO} + C _{MS})	[€]	12.672	12.171	4,0%
OPEX	[€]	32.933	30.593	7,1%
Classe energetica	[-]	D	D	

Nota (20) I fattori di emissione per il calcolo delle emissioni ci CO2 sono: 0,202 [kgCO2/kWh] per il vettore termico e 0,467 per il vettore elettrico

I costi unitari dei vettori energetici utilizzati sono: 0,081 [€/kWh] per il vettore termico e 0,180 [€/kWh] per il vettore elettrico

Figura 8.4 – EEM2: Riduzione dei costi operativi e delle emissioni di CO2 a partire dalla baseline

_

⁴ Oltre alla riduzione dei consumi energetici si è considerata una riduzione dei costi legati alla manutenzione ordinaria, questo perché la vita utile dei corpi illuminanti LED è più elevata rispetto a quella delle lampade fluorescenti, per cui la loro sostituzione avverrà meno frequentemente

9 VALUTAZIONE ECONOMICO-FINANZIARIA

9.1 ANALISI DEI COSTI DEI SINGOLI INTERVENTI MIGLIORATIVI CONSIDERATI FATTIBILI

EEM1: Installazione Termovalvole

Nella Tabella 9.1 è riportata l'analisi dei costi relativi alle EEM 1, che consiste nella installazione di termovalvole sui radiatori esistenti.

Tabella 9.1 – Analisi dei costi della EEM1 – Installazione termovalvole

DESCRIZIONE		FONTE PREZZO UTILIZZATO	QUANTITÀ	U.M.	PREZZO UNITARIO PREZZARIO	PREZZO UNITARIO SCONTATO	TOTALE (IVA ESCLUSA)	IVA	TOTALE (IVA INCLUSA)
PR.C17.A15.010	Valvole micrometriche a squadra complete di testa termostatica con elemento sensibile a gas: Ø 15 mm	Prezzario Regione Liguria	111	cad	35,4	32,2	3.574,2	22%	4.360,52
PR.C47.H10.120	Circolatori per impianti di riscaldamento e condizionamento a velocità variabile, regolate elettronicamente, classe di protezione IP44, classe energetica A, 230V, del tipo: versione gemellare con attacchi flangiati, Ø 40, PN6-10, prevalenza da 1 a 12 m, portata da 1 a 18 m³/h	Prezzario Regione Liguria	0	cad	2.182,1	1.983,8	-	22%	-
40.E10.A10.010	Sola posa in opera di pompe e/o circolatori singoli o gemellari per fluidi caldi o freddi, compreso bulloni, guarnizioni e il collegamento alla linea elettrica, escluse le flange. Per attacchi del diametro nominale di: fino a 40 mm	Prezzario Regione Liguria	0		43,1	39,1	-	22%	-
PR.E40.B05.210	Interruttore automatico magnetotermico con potere di interruzione 4,5KA bipolare fino a 32 A - 230 V	Prezzario Regione Liguria	1	cad	22,7	20,6	20,6	22%	25,17
RU.M01.E01.020	Impianti Elettrici Idraulici Riscaldamento Installatore 4° cat. ex operaio specializzato	Prezzario Regione Liguria	37	h	31,9	29,0	1.072,3	22%	1.308,24
	Costi per la sicurezza	-	3%	%			140,0	22%	170,82
	Costi progettazione (in % su importo lavori)	-	7%	%			326,7	22%	398,57
	TOTALE (I ₀ – EEM1)						5.133,9	22%	6.263,32

EEM2: Sostituzione corpi illuminanti

Nella Tabella 9.2 è riportata l'analisi dei costi relativi alle EEM2, che consiste nella sostituzione dei corpi illuminanti esistenti.

La realizzazione di tale intervento consentirebbe l'ottenimento degli incentivi previsti dal conto termico 2.0, intervento 1 (intervento 1.F - art. 4, comma 1, lettera f).

Tabella 9.2 – Analisi dei costi della EEM2 – Sosituzione corpi illuminanti

	DESCRIZIONE	FONTE PREZZO UTILIZZATO	QUANTITÀ	U.M.	PREZZO UNITARIO PREZZARIO	PREZZO UNITARIO SCONTATO	TOTALE (IVA ESCLUSA)	IVA	TOTALE (IVA INCLUSA)
					[€/n° o €/m₂]	[€/n° o €/m₂]	[€]	[%]	[€]
043169c	Plafoniera stagna rettangolare, corpo in policarbonato autoestinguente, schermo in policarbonato autoestinguente trasparente prismatizzato internamente, per installazione a parete, plafone o a sospensione, apparecchio con grado di protezione IP 66, lampade LED temperatura di colore 4000 K, alimentazione 230 V c.a.: bilampada: lunghezza 1.600 mm, 48 W, 7.780 lm	DEI Imp. Ele. 2017	130	cad	139,46	126,78	16.481,64	22%	20.107,6
043168b	Plafoniera stagna rettangolare, corpo in policarbonato autoestinguente, schermo in policarbonato autoestinguente trasparente prismatizzato internamente, per installazione a parete, plafone o a sospensione, apparecchio con grado di protezione IP 66, lampade LED temperatura di colore 4000 K, alimentazione 230 V c.a.: monolampada: lunghezza 1.300 mm, 18 W, 2.920 lm	DEI Imp. Ele. 2017	17	cad	93,24	84,76	1.440,98	22%	1.758,0
205015b	Rimozione di plafoniera per lampade fluorescenti, inclusi gli oneri della rimozione dei sostegni a muro o a soffitto e l'avvicinamento al luogo di deposito provvisorio nell'ambito del cantiere, escluso l'onere di carico, trasporto e scarico a discarica autorizzata: 2 x 18 W	DEI Imp. Ele. 2017	17	cad	10,09	9,17	155,94	22%	190,2
205015g	Rimozione di plafoniera per lampade fluorescenti, inclusi gli oneri della rimozione dei sostegni a muro o a soffitto e l'avvicinamento al luogo di deposito provvisorio nell'ambito del cantiere, escluso l'onere di carico, trasporto e scarico a discarica autorizzata: 2 x 58 W	DEI Imp. Ele. 2017	130	cad	13,39	12,17	1.582,45	22%	1.930,6
M01003a	Operaio edile qualificato	DEI Imp. Ele. 2016	73,5	€/ora	26,8	24,3	1.789,4	22%	2.183,1

M01004a	Operaio edile comune	DEI Imp. Ele. 2016	73,5	€/ora	24,1	21,9	1.611,7	22%	1.966,2
	Costi per la sicurezza	-	3%	%			691,9	22%	844,1
	Costi progettazione (in % su importo lavori)	-	7%	%			1.662,8	22%	2.028,6
	TOTALE (I ₀ – EEM1)						25.416,7	22%	31.008,4
	Incentivi	[Conto termico]							12.403,3
	Durata incentivi								5,0
	Incentivo annuo								2.480,7

Il contributo dato dall'incentivo "Conto Termico" è stato calcolato considerando la seguente relazione

$$I_{tot} = \%_{spesa} \cdot C \cdot S_{int}$$

Dove si si è indicato con:

- I_{tot}: incentivo totale dell'intervento cumulato per l'intera durata, che verrà ripartito e corrisposto in 5 rate annuali costanti, oppure, in un'unica soluzione per gli aventi diritto (le PA e le ESCo che operano per loro conto, ad esclusione delle Cooperative di abitanti e delle Cooperative sociali).
- I_{max}: valore massimo raggiungibile dall'incentivo totale (tabella 5 del Decreto)
- %_{spesa}: percentuale incentivata della spesa totale sostenuta per l'intervento (tabella 5 del Decreto)
- S_{int}: superficie12 oggetto dell'intervento (m2) pari a circa 1.538,66 mq
- $C = \frac{spesa\ sostenuta\ in\ €}{superficie\ oggetto\ di\ intervento}$ costo specifico sostenuto pari a 20,2 €/mq
- Cmax è il valore massimo di C ed è definito dalla tabella 5 del Decreto.

Poiché il costo specifico dell'intervento supera il valore C_{max} il calcolo dell'incentivo è stato effettuato con il valore Cmax riportato in tabella per l'intervento considerato.

[Tabella 5 – Allegato II - DM 16.02.16]								
Tipologia di Intervento	Costo massimo ammissibile (C _{max})	Valore massimo dell'incentivo I _{max} [€]						
Sostituzione di corpi illuminanti comprensivi di lampade per l'illuminazione degli interni e delle pertinenze esterne – installazione di lampade ad alta efficienza	15 €/m²	30.000						
Sostituzione di corpi illuminanti comprensivi di lampade per l'illuminazione degli interni e delle pertinenze esterne – installazione di lampade a led	35 €/m²	70.000						

EEM3: Cappotto termico

Nella Tabella 9.3 è riportata l'analisi dei costi relativi alla EEM3, che consiste nella realizzazione dell'isolamento delle pareti esterne mediante il sistema a cappotto termico.

La realizzazione di tale intervento consentirebbe l'ottenimento degli incentivi previsti dal conto termico 2.0, (intervento 1.B - art. 4, comma 1, lettera a) i quali possono essere quantificati come di seguito descritto:

Tabella 9.3 – Analisi dei costi della EEM3 – sistema a cappotto termico

DESC	CRIZIONE	FONTE PREZZO UTILIZZATO	QUANTITÀ	U.M.	PREZZO UNITARIO PREZZARIO	PREZZO UNITARIO SCONTATO	TOTALE (IVA ESCLUSA)	IVA	TOTALE (IVA INCLUSA)
PR.A17.D01.010	Isolanti di origine minerale. Pannelli in silicato di calcio, per l'isolamento termoacustico a	Prezzario Regione Liguria	17.856,5	m2cm	3,5	3,2	56.653,9	22%	69.117,8

	cappotto di facciate e soffitti; permeabili al vapore, antincendio, traspirabili, incombustibili (classe 0). Lambda = 0,045 W/mK spessore da 6 a 20 cm per ogni cm								
25.A44.A30.010	Solo posa di isolamento termico-acustico superfici verticali eseguito con pannelli isolanti di spessore fino a cm	Prezzario Regione Liguria	1.374,0	mq	14,3	13,0	17.799,5	22%	21.715,4
PR.A02.A20.600	Malta premiscelata Rivestimento minerale per rasature armate /cappotto termico idr/m2orepellente, impermeabile e traspirante in sacchi . Resa per mano 1,8 kg.	Prezzario Regione Liguria	1.374,0	kg	0,8	0,7	1.024,3	22%	1.249,6
PR.A02.A25.010	Collante cementizio per murature in cemento cellulare espanso.	Prezzario Regione Liguria	823,0	kg	0,5	0,4	366,6	22%	447,3
95.B10.S10.010	Ponteggiature "di facciata", in elementi metallici prefabbricati e/o "giunto-tubo", compreso il montaggio e lo smontaggio finale, i piani di lavoro, idonea segnaletica, impianto di messa a terra, compresi gli eventuali oneri di progettazione, escluso: mantovane, illuminazione notturna e reti di protezione - Montaggio, smontaggio e noleggio per il primo mese di utilizzo.	Prezzario Regione Liguria	1.374,0	m2	14,3	13,0	17.837,0	22%	21.761,2
25.A05.E10.015	Scrostamento intonaco fino al vivo della muratura, esterno, su muratura di	Prezzario Regione Liguria	1.374,0	m2	7,3	6,6	9.068,4	22%	11.063,4

	mattoni o calcestruzzo								
25.A54.A30.010	Intonaco esterno in malta a base di calce idraulica strato aggrappante a base di calce idraulica naturale NHL 3,5 (EN459-1) e sabbie calcaree classificate, spessore 5 mm circa.	Prezzario Regione Liguria	1.374,0	m2	4,8	4,4	6.008,1	22%	7.329,9
25.A54.B40.010	Rasatura armata con malta preconfezionata a base minerale eseguita a due riprese fresco su fresco rifinita a frattazzo, con interposta rete in fibra di vetro o in poliestere compresa pulizia e preparazione del supporto con una mano di apposito primer. per rivestimento di intere campiture con rete in fibra di vetro 4x4 da 150 gr/mq , spessore totale circa mm 4.	Prezzario Regione Liguria	1.374,0	m2	23,8	21,6	29.715,9	22%	36.253,4
	Costi per la sicurezza	-	3%	%	-	-	4.154,2	22%	5.068,1
	Costi progettazione (in % su importo lavori)	-	7%	%			9.693,2	22%	11.825,7
	TOTALE (I ₀ – EEM1)						152.321,1	22%	185.831,8
	Incentivi	[Conto termico]							54.960,0
	Durata incentivi	,							5,0
	Incentivo annuo								10.992,0

Il contributo dato dall'incentivo "Conto Termico" è stato calcolato considerando la seguente relazione

$$I_{tot} = \%_{spesa} \cdot C \cdot S_{int}$$

Dove si si è indicato con:

- I_{tot}: incentivo totale dell'intervento cumulato per l'intera durata, che verrà ripartito e corrisposto in 5 rate annuali costanti, oppure, in un'unica soluzione per gli aventi diritto (le PAe le ESCo che operano per loro conto, ad esclusione delle Cooperative di abitanti e delle Cooperative sociali).
- I_{max}: valore massimo raggiungibile dall'incentivo totale (tabella 5 del Decreto)
- %_{spesa}: percentuale incentivata della spesa totale sostenuta per l'intervento (tabella 5 del Decreto)
- S_{int}: superficie oggetto dell'intervento (m2) pari a circa 1.374 mq
- $C = \frac{spesa\ sostenuta\ in\ }{superficie\ oggetto\ di\ intervento}$ costo specifico sostenuto pari a 135,25 €/m²
- Cmax è il valore massimo di C ed è definito dalla tabella 5 del Decreto.

Poiché il costo specifico dell'intervento supera il valore C_{max} il calcolo dell'incentivo è stato effettuato con il valore Cmax riportato in tabella per l'intervento considerato.

[Tabella 5 – Allegato II - DM 16.02.16]							
Tipologia di intervento	Percentuale incentivata della spesa ammissibile (%spesa)	Costo massimo ammissibile (C _{max})	Valore massimo dell'incentivo (I _{max}) [€]				
i. Strutture opache orizzontali ¹³ : isolamento coperture							
Esterno	40 (*) (**)	200 €/m²					
Interno	40 (*) (**)	100 €/m²					
Copertura ventilata	40 (*) (**)	250 €/m²					
ii. Strutture opache orizzontali: isolamento pavimenti							
Esterno	40 (*) (**)	120 €/m²	(i+ii+iii) ≤ 400.000				
Interno	40 (*) (**)	100 €/m²					
iii. Strutture opache verticali: isolamento pareti							
perimetrali							
Esterno	40 (*) (**)	100 €/m²					
Interno	40 (*) (**)	80 €/m ²					
Parete ventilata	40 (*) (**)	150 €/m²					

9.2 ANALISI DI CONVENIENZA DEI SINGOLI INTERVENTI MIGLIORATIVI CONSIDERATI FATTIBILI

L'analisi di convenienza delle singole EEM analizzate è stata svolta tramite la valutazione dei principali indicatori economici d'investimento secondo il metodo dei flussi di cassa, valutando chiaramente i valori dei costi, ricavi, flussi di cassa e redditività.

Si è inoltre posta particolare attenzione nella valutazione dei possibili sistemi incentivanti applicabili agli scenari (Conto Termico, Titoli di Efficienza Energetica, ecc.), con la quantificazione dell'importo incentivabile e l'analisi dei flussi di cassa e degli indicatori finanziari con e senza il contributo degli incentivi considerati.

Gli indicatori economici d'investimento utilizzati sono:

- TRS (tempo di ritorno semplice);
- TRA (tempo di ritorno attualizzato);
- VAN (valore attuale netto);
- TIR (tasso interno di rendimento)
- IP (indice di profitto);

Essi sono cosi definiti:

Tempo di ritorno semplice (TRS):

$$TRS = \frac{I_0}{\overline{FC}}$$

Dove:

- I₀ è il valore dell'investimento iniziale;
- \overline{FC} è il flusso di cassa medio annuale, calcolato come la media aritmetica sugli anni di vita utile della somma algebrica dei costi e dei benefici generati dall'investimento.
- 2) Tempo di ritorno attualizzato (TRA):

$$TRA = \frac{I_0}{\overline{FC}_{att}}$$

Dove:

- I₀ è il valore dell'investimento iniziale;
- \overline{FC}_{att} è il flusso di cassa attualizzato medio annuale, calcolato come la media aritmetica sugli anni di vita utile della somma algebrica dei costi e dei benefici generati dall'investimento, opportunamente attualizzati tramite il tasso di attualizzazione.

$$FC_{att,n} = FC_n \frac{(1+f)^n (1+f')^n}{(1+R)^n} \approx FC_n \frac{1}{(1+i)^n}$$

Dove:

- FC_n è il flusso di cassa all'anno n-esimo;
- f è il tasso di inflazione;
- f' è la deriva dell'inflazione;
- R è il tasso di sconto;
- *i =R-f-f'* è il tasso di attualizzazione;
- $\frac{1}{(1+i)^n}$ è il fattore di annualità (FA_n).
- 3) Valore Attuale Netto (VAN) del progetto:

$$VAN = \sum_{j=1}^{n} \frac{FC_n}{(1+i)^n} - I_0$$

Dove:

- n sono gli anni di vita tecnica per la tecnologia di ciascuna EEM, o, 15 anni per lo SCN1, o, 25 anni per SCN2;
- 4) Tasso Interno di Rendimento (TIR), è il valore di *i* che rende il VAN = 0.
- 5) Indice di Profitto (IP):

$$IP = \frac{VAN}{I_0}$$

I tassi di interesse utilizzati per le operazioni di attualizzazione e analisi economico sono i seguenti:

- Tasso di sconto: R = 4%
- Tasso di inflazione relativa al costo dei vettori energetici e dei servizi di manutenzione: f = 0.5%
- Deriva dell'inflazione relativa al costo dei vettori energetici $f'_{ve} = 0.7\%$ e dei servizi di manutenzione $f'_m = 0\%$

I risultati dell'analisi economica tramite flussi di cassa sono poi stati rappresentati mediante tipici grafici a farfalla, dal quale è possibile evincere i flussi di cassa cumulati di progetto, l'investimento capitale iniziale, l'I₀, e il TRS.

Analogamente la rappresentazione grafica dei flussi di cassa cumulati attualizzati permetterà la visualizzazione del TRA e del VAN.

Di seguito si riportano i flussi di cassa ed i risultati dell'analisi di convenienza delle singole EEM proposte.

Il dettaglio dei calcoli è riportato all' Allegato B – Elaborati.

EEM1: Installazione termovalvole

L'analisi di convenienza effettuata per la EEM1 porta alla valutazione dei seguenti indici finanziari:

Tabella 9.4 – Risultati dell'analisi di convenienza della EEM1– Installazione termovalvole

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	lo	€	6.263
Oneri Finanziari %I₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	15
Incentivo annuo	В	€/anno	-
Durata incentivo	nв	anni	5
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tompo di rientre complice	TDC	1.0	1.0

INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	1,8	1,8
Tempo di rientro attualizzato	TRA	1,9	1,9
Valore attuale netto	VAN	28.838	28.838
Tasso interno di rendimento	TIR	52,4%	52,4%
Indice di profitto	IP	4,60	4,60

I flussi di cassa rappresentativi dell'analisi sono riportati nelle

Figura 9.1 –EEM1 Flussi di Cassa, con e senza incentivi

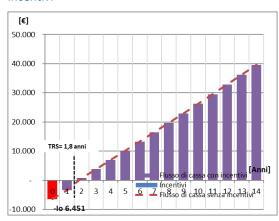



Figura 9.2 – EEM1: Flussi di Cassa Attualizzati, con e senza incentivi

Dall'analisi effettuata è emerso che l'intervento risulta economicamente vantaggioso con tempi di ritorno inferiori ai 3 anni.

EEM2: Sostituzione corpi illuminanti

L'analisi di convenienza effettuata per la EEM2 porta alla valutazione dei seguenti indici finanziari:

Tabella 9.5 – Risultati dell'analisi di convenienza della EEM2- Sostituzione corpi illuminanti

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	lo	€	31.008
Oneri Finanziari %lo	OF	[%]	3,0%

Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	8
Incentivo annuo	В	€/anno	2.481
Durata incentivo	nв	anni	5
Tasso di attualizzazione	i	[%]	3,5%

INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	13,0	7,0
Tempo di rientro attualizzato	TRA	14,9	9,1
Valore attuale netto	VAN	- 14.778	- 3.734
Tasso interno di rendimento	TIR	-12,3%	0,1%
Indice di profitto	IP	-0,48	-0,12

I flussi di cassa rappresentativi dell'analisi sono riportati nelle Figura 9.3 e Figura 9.4

Figura 9.3 –EEM2: Flussi di Cassa, con e senza incentivi

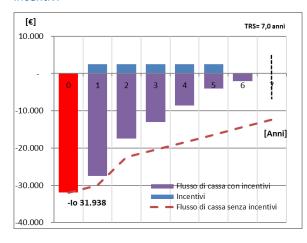
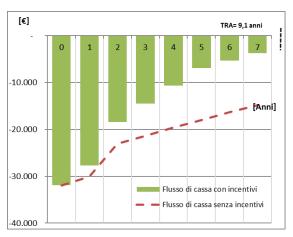



Figura 9.4 – EEM2: Flussi di Cassa Attualizzati, con e senza incentivi

Dall'analisi effettuata è emerso che l'intervento, attraverso la forma incentivante del conto termico, risulta economicamente non vantaggioso con tempi di ritorno superiori a 8 anni.

EEM3: Cappotto termico

L'analisi di convenienza effettuata per la EEM3 porta alla valutazione dei seguenti indici finanziari:

Tabella 9.6 – Risultati dell'analisi di convenienza della EEM3– Sostituzione corpi illuminanti

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	lo	€	185.832
Oneri Finanziari %Io	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	30
Incentivo annuo	В	€/anno	10.992
Durata incentivo	n _B	anni	5
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI

Tempo di rientro semplice	TRS	31,3	20,9
Tempo di rientro attualizzato	TRA	49,4	34,8
Valore attuale netto	VAN	- 75.267	- 26.333
Tasso interno di rendimento	TIR	-0,3%	2,2%
Indice di profitto	IP	-0,41	-0,14

I flussi di cassa rappresentativi dell'analisi sono riportati nelle Figura 9.5 e Figura 9.6

Figura 9.5 –EEM3: Flussi di Cassa, con e senza incentivi

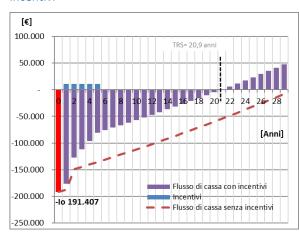
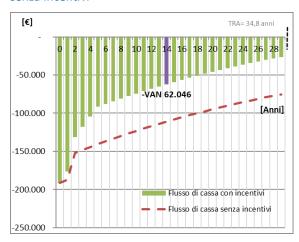



Figura 9.6 – EEM3: Flussi di Cassa Attualizzati, con e senza incentivi

Dall'analisi effettuata è emerso che l'intervento, attraverso la forma incentivante del conto termico, risulta economicamente non vantaggioso con tempi di ritorno superiori a 30 anni.

Sintesi

La sintesi della valutazione economico – finanziaria delle EEM proposte è riportata nelle Tabella 9.7 e Tabella 9.8.

Tabella 9.7 – Sintesi dei risultati della valutazione economico-finanziaria, caso senza incentivi

						SENZA INCE	NTIVI					
	%∆ _E	%∆ _{CO2}	ΔC _E	ΔСмо	ΔC _{MS}	l o	TRS	TRA		VAN	TIR	IP
	[%]	[%]	[€/anno]	[€/anno]	[€/anno]	[€]	[anni]	[anni]	[anni]	[€]	[%]	[-]
EEM 1	9%	8%	1.732,4	2.002,2	-	6.263,3	2	2	15	28.838,49	0,524	4,604
EEM 2	9%	9%	1.839,9	500,5	-	31.008,0	13	15	8	-14.777,96	-0,123	-0,477
EEM 3	26%	26%	5.254,3	-	-	185.832,0	31	49	30	-75.267,41	-0,003	-0,405

Oltre agli indicatori finanziari precedentemente descritti, i parametri elencati in tabella sono i seguenti:

- $\%\Delta_{E}$ è il valore percentuale di riduzione dei consumi energetici rispetto al baseline energetico complessivo (termico + elettrico);
- $\%\Delta_{CO2}$ è il valore percentuale di riduzione delle emissioni di CO2 rispetto al baseline dell'emissioni complessivo (termico + elettrico);
- Δ_{CE} è il risparmio economico annuo attribuibile alla riduzione dei consumi energetici (termico + elettrico); assume valori positivi;
- Δ_{CMO} è la variazione di costo annuo attribuibile al nuovo costo per la gestione e la manutenzione ordinaria; assume valori positivi per un decremento e valori negativi per un incremento;
- Δ_{CMS} è la variazione di costo annuo attribuibile al nuovo costo previsto per la manutenzione straordinaria; assume valori positivi per un decremento e valori negativi per un incremento;
- I₀ è il valore dell'investimento iniziale per la realizzazione dell'intervento; assume valori negativi;

Dall'analisi dei risultati emerge che senza l'accesso alle forme incentivanti solo l'intervento delle termovalvole sarebbe economicamente sostenibile.

Tabella 9.8 – Sintesi dei risultati della valutazione economico-finanziaria, caso con incentivi

						CON INCEN	ITIVI					
	%∆ _E	%∆ _{CO2}	ΔC _E	ΔСмо	ΔC _{MS}	lo	TRS	TRA		VAN	TIR	IP
		[%]	[€/anno]	[€/anno]	[€/anno]	[€]	[anni]	[anni]	[anni]	[€]	[%]	[-]
EEM 1	9%	8%	1.732,4	2.002,2	-	6.263,3	1,8	1,9	15,0	28.838,5	0,524	4,604
EEM 2	9%	9%	1.839,9	500,5	-	31.008,0	7,0	9,1	8,0	-3.734,5	0,001	-0,120
EEM 3	26%	26%	5.254,3	-	-	185.832,0	20,9	34,8	30,0	-26.333,0	0,022	-0,142

Dall'analisi dei risultati emerge che grazie all'accesso alla forma incentivante del conto termico tutti gli interventi risultano essere economicamente convenienti.

9.3 IDENTIFICAZIONE DELLE SOLUZIONI INTEGRATE D'INTERVENTO E SCENARI D'INVESTIMENTO

A seguito dell'analisi delle singole misure di efficienza energetica è stato possibile la definizione di un solo scenario ottimale a partire dalla combinazione delle singole EEM proposti, di cui sia stata accertata la fattibilità tecnica ed economica, che consentano un miglioramento del paramento di efficienza energetica dell'edificio superiore a due classi.

La scelta di effettuare l'analisi di un solo scenario ottimale è dovuto al fatto che l'edificio oggetto della diagnosi è soggetto a vincolo architettonico per cui non sono stati considerati interventi sull'involucro edilizio.

La scelta dello scenario ottimale è quindi stata effettuata a partire dai risultati riportati nella tabella di cui sopra, tramite la comparazione di VAN ed IP dei diversi casi delle singole EEM, valutati per ciascun scenario considerando una vita utile in termini di TRS accettabile e la sostenibilità finanziaria degli investimenti in termini di DSCR e LLCR.

Per fattibilità economica delle soluzioni integrate si intendere accettabili le soluzioni che verificano i seguenti scenari economici:

Scenario ottimale 1, (SCN1), per il quale è verificato un tempo di ritorno semplice, TRS ≤ 15 anni;

Il primo scenario ottimale, con tempi di ritorno del capitale investito maggiore, permetterà la formulazione di soluzione integrate che includono interventi sull'involucro degli edifici, o più in generale, interventi tipicamente caratterizzati da tempi di ritorno lunghi, laddove, nel caso del secondo scenario ci si aspetta che gli interventi proposti interessino maggiormente investimenti per gli impianti.

Come detto, in questo cas, questa seconda analisi non è stata effettuata in quanto l'edificio oggetto della DE è sottoposto a vincolo architettonico ai sensi dell'art.12 del Dlgs. 42/2004

La valutazione della fattibilità tecnico-economica è stata effettuata al fine di una gestione diretta da parte della PA o indiretta mediante ESCO.

Nella formulazione del Piano Economico-Finanziario indicativo dello scenario ottimale, si è assunto che i capitali per la realizzazione degli interventi siano resi disponibili da un privato, con una ripartizione dell'investimento al 20% tramite mezzi propri (equity) ed all'80% tramite finanziamento terzi (debito). Nel calcolo del VAN di Progetto il tasso di attualizzazione *i* usato coincide con il WACC (costo medio ponderato del capitale) ed è posto pari al 4%, sulla base della seguente equazione:

$$WACC = Kd \times \frac{D}{D+E} \times (1-\tau) + Ke \times \frac{E}{D+E}$$

Dove:

Kd è costo del debito, sarà ipotizzato pari a 3.82%

- Ke è il costo dell'equity, ossia il rendimento atteso dall'investitore, sarà ipotizzato pari a 9.00%
- D è il Debito, pari a 80% di l₀
- E è l'Equity, pari a 20% di I₀
- $\frac{D}{D+E}$ è la leva finanziaria, sarà quindi pari a 80%
- τ è l'aliquota fiscale, posta pari al 27.9% essendo la somma dell'aliquota IRES, pari al 24%, e quella IRAP pari al 3,9%.

L'ultima dimensione di analisi è la valutazione della sostenibilità finanziaria. Infatti, non tutti gli investimenti economicamente convenienti risultano poi fattibili dal punto di vista finanziario. La sostenibilità finanziaria di un progetto può essere espressa anche in termini di bancabilità ricorrendo a degli indicatori capaci di valutare il margine di sicurezza su cui i soggetti finanziatori possono contare per essere garantiti sul puntuale pagamento del servizio del debito.

Per gli scenari ottimali, si è quindi proceduto ad una valutazione della sostenibilità finanziaria. Gli indicatori di bancabilità utilizzati sono:

- DSCR (Debt Service Cover Ratio) medio di periodo. Esprime la capacità dell'investimento di rimborsare il servizio del debito (capitale e interessi) per tutta la durata del finanziamento;
- LLCR (*Loan Life Cover Ratio*) medio di periodo. Esprime la capacità del progetto di generare flussi di cassa positivi dopo aver ripagato il servizio del debito.

Essi sono così definiti:

1) Debt Service Cover Ratio (DSCR):

$$DSCR = \frac{FCO_n}{K_n + I_t}$$

Dove:

- FCO_n sono i flussi di cassa operativi nell'anno corrente n-esimo;
- K_n è la quota capitale da rimborsare nell'anno n-esimo;
- In è la quota interessi da ripagare nell'anno tn-esimo.
- 2) Loan Life Cover Ratio (LLCR):

$$LLCR = \frac{\sum_{n=s}^{s+m} \frac{FCO_n}{(1+i)^n} + R}{D_n}$$

Dove:

- s è il periodo di valutazione dell'indicatore;
- s+m è l'ultimo periodo di rimborso del debito;
- FCO_n è il flusso di cassa per il servizio del debito;
- D è il debito residuo (outstanding) al periodo t-esimo;
- i è il tasso di attualizzazione dei flussi di cassa;
- R è l'eventuale riserva a servizio del debito accumulata al periodo di valutazione (Debt Reserve).

Valori positivi (nell'intorno di 1,3) del DSCR indicano convenzionalmente la capacità dell'investimento di generare risorse sufficienti a ripagare il sevizio del debito; valori maggiori di 1 del LLCR indicano la liquidità generata dal progetto dopo aver ripagato il debito. Pertanto, per la proposta di scenari ottimali bancabili sono stati considerati fattibili solo scenari che realizzino valori positivi di DSCR nell'intorno di 1,3 e valori positivi di LLLCR maggiori di 1.

Nell'ambito della riqualificazione energetica degli edifici scolastici, il presente rapporto di DE sarà inoltre fondamentale per dotare la Pubblica Amministrazione (PA) di un'analisi tecnico-economica di dettaglio delle EEM identificate all'interno degli scenari ottimali, con lo scopo di consentire l'individuazione dei possibili strumenti di finanziamento delle stesse, sia tramite finanziamento proprio, sia tramite proposte di *Energy Performance Contract* (EPC) da parte di Società di Servizi Energetici (*Energy Service Company* – ESCO) abbinate all'istituto del Finanziamento Tramite Terzi (FTT). In tale ambito trova espressione l'applicazione del Partenariato Pubblico Privato (PPP).

Al fine di effettuare concretamente un'analisi finanziaria preliminare e verificare quindi gli aspetti di convenienza economica e sostenibilità finanziari degli scenari ottimali è stato presentato un modello semplificato di Piano Economico Finanziario (PEF) indicativo per ogni scenario.

Infine, si è proceduto all'identificazione dell'eventuale canone applicabile nel caso di attuazione dello scenario ottimale attraverso la partecipazione di ESCo secondo lo schema di *Energy Performance Contract* (EPC).

Si sono quindi individuati i seguenti scenari, che forniscano i maggiori vantaggi in termini di riduzione dei costi e consumi energetici, nei tempi di ritorno accettabili sopra descritti.

• <u>Scenario 1: EEM1+EEM2:</u> Tale scenario consiste nella realizzazione di sostituzione di corpi illuminanti e l'installazione di termovalvole

9.3.1 Scenario 1: EEM1+EEM2

La realizzazione dello scenario 1 consiste nella combinazione delle EEM di seguito elencate:

- EEM1: installazione di termovalvole
- EEM2: sostituzione corpi illuminanti

Tabella 9.9 – Combinazione di EEM proposta per lo scenario 1

	TOTALE		TOTALE
VOCE INVESTIMENTO	(IVA ESCLUSA)	IVA AI 22%	(IVA INCLUSA)
	[€]	[€]	[€]
EEM1 Fornitura & Posa	23.062	5.074	28.136
EEM2 Fornitura & Posa	4.667	1.027	5.694
Costi per la sicurezza	831,88	183,01	1014,89
Costi per la progettazione	1989,47	437,68	2427,16
TOTALE (I₀)	30.551	6.721	37.272
NOSE NANHITENTIONE	C _{MO}	C _{MS}	C_M
VOCE MANUTENZIONE	(IVA INCLUSA)	(IVA INCLUSA)	(IVA INCLUSA)
	[€]	[€]	[€]
EEM1 O&M	8.509,2	2.661,1	11.170,3
EEM2 O&M	9.510,3	2.661,1	12.171,4
TOTALE (C _M)	8.008,6	2.661,1	10.669,7
VOCE INCENTIVO	DESCRIZIONE	TOTALE	
VOCE INCENTIVO	DESCRIZIONE	(IVA INCLUSA)	
		[€]	
Incentivi	[Conto termico]	12.403,34	
Durata incentivi		5,0	-
Incentivo annuo		2480,7	

A seguito della modellazione dei due scenari ottimali è stato possibile rappresentare I risultati del bilancio energetico termico nella forma di diagramma di sankey relativo alle situazioni post-intervento.

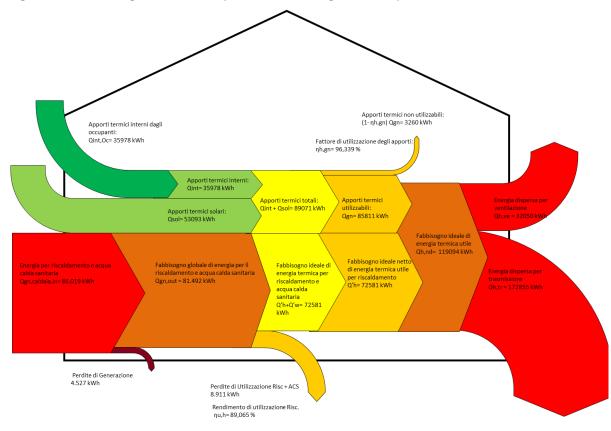


Figura 9.7 – SCN1: Diagramma di Sankey relativo al fabbisogno termico post intervento

Dall'analisi dei diagrammi di Sankey relativo al fabbisogno termico dell'edificio post intervento è possibile notare che il contributo relativo all'energia dispersa per trasmissione è notevolmente diminuito, insieme al fabbisogno globale di energia per il riscaldamento.

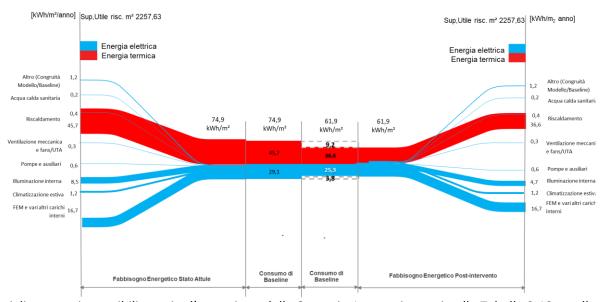


Figura 9.8 – SCN1: Bilancio energetico complessivo dell'edificio post intervento

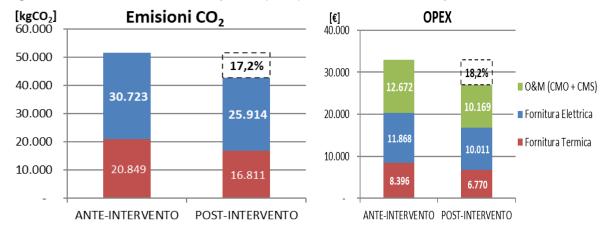

I miglioramenti ottenibili tramite l'attuazione dello Scenario 1 sono riportati nella Tabella 9.10 e nella Figura 9.9

Tabella 9.10 – Risultati analisi SCN1 – EEM1+EEM2

CALCOLO RISPARMIO	U.M.	ANTE-INTERVENTO	POST-INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Rendimento di regolazione]	[%]	76,03%	99,00%	58,6%
EM2 [Potenza corpi illuminanti]	[W]	116	48	-30,2%
Q _{teorico}	[kWh]	107.589	86.749	19,4%
EE _{teorico}	[kWh]	63.035	53.169	15,7%
Qbaseline	[kWh]	103.215	83.222	19,4%
EEBaseline	[kWh]	65.787	55.491	15,7%
Emiss. CO2 Termico	[kgCO ₂]	20.849	16.811	19,4%
Emiss. CO2 Elettrico	[kgCO ₂]	30.723	25.914	15,7%
Emiss. CO2 TOT	[kgCO ₂]	51.572	42.725	17,2%
Fornitura Termica, CQ	[€]	8.396	6.770	19,4%
Fornitura Elettrica, CEE	[€]	11.868	10.011	15,7%
Fornitura Energia, C _E	[€]	20.264	16.781	17,2%
Смо	[€]	10.011	7.508	25,0%
C _{MS}	[€]	2.661	2.661	0,0%
O&M (C _{MO} + C _{MS})	[€]	12.672	10.169	19,8%
ОРЕХ	[€]	32.936	26.950	18,2%
Classe energetica	[-]	D	D	0 classi

Figura 9.9 - SCN1: Riduzione dei costi operativi (OPEX) e delle emissioni di CO₂ a partire dalla baseline

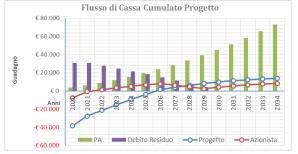
E' stato quindi possibile presentare un modello semplificato di Piano Economico Finanziario (PEF) indicativo, i cui calcoli di dettaglio sono riportati all'Allegato L – Piano Economico Finanziario scenari. I risultati dell'analisi sono riportati nella Tabella 9.11, Tabella 9.12 e Tabella 9.13 e nelle successive figure.

Tabella 9.11 – Parametri finanziari dell'analisi di redditività dello SCN1– EEM1+EEM2

PARAMETRI FINANZIARI		
Anni Costruzione	nı	1,00
Anni Gestione Servizio	n _s	14,00
Anni Concessione	n	15,00
Anno inizio Concessione	n ₀	2.020,00
Anni dell'ammortamento	n _A	10,00
Saggio Cassa Deposito e Prestiti	k CdP	0,02
Costo Capitale Azienda	WACC	0,04
kprogetto = Max(WACC; kCdP)	K _{pogetto}	0,04
Inflazione ISTAT	f	0,01
deriva dell'inflazione	f'	0,01
%, interessi debito	k _D	0,04
%, interessi equity	k _E	0,09
Aliquota IRES	IRES	0,24
Aliquota IRAP	IRAP	0,04
Aliquota fiscale	τ	0,28
Anni debito (finanziamento)	n _D	9,00
Anni Equity	n _E	14,00
Costi d'Investimento diretti, IVA incl.	l _o	37.271,32
Oneri Finanziari (costi indiretti)	%Of	0,03
Costi d'Investimento indiretti, IVA incl.	Of	1.118,14
Costi d'Investimento (diretti+Indiretti) , IVA incl.	CAPEX	38.389,46
%CAPEX a Debito	D	0,80
%CAPEX a Equity	E	0,20
Debito	I _D	30.711,57
Equity	lε	7.677,89
Fattore di annualità Debito	FA _D	7,61
Rata annua debito	q _D	4.037,47
Costo finanziamento,(D+INT₀)	q _D *n _D	36.337,19

Tabella 9.12 – Parametri Economici dell'analisi di redditività dello SCN1

PARAMETRI ECONOMICI		
Costo annuo energia pre-intervento, IVA escl.	C _{E0}	20.264,00
Costo annuo O&M pre-intervento, IVA escl.	Смо	12.672,00
Spesa PA pre-intervento (Baseline)	C _{Baseline}	32.936,00
Altri costi di gestione ESCo post-intervento, IVA escl.	Caltro	0,00
Riduzione% costi fornitura Energia	% ∆ C _E	0,17
Riduzione% costi O&M	%∆См	0,20
Obiettivo riduzione spesa PA	%C _{Baseline}	0,05
Risparmio annuo PA garantito	45,6%	4.008,58
Risparmio annuo PA immediato durante la gestione	Risp.IM	1.646,80
Risparmio PA durante la concessione	14%	73.009,25
Risparmio annuo PA al termine della concessione	Risp.Term.	7.172,71
N° di Canoni annuali	anni	14,00

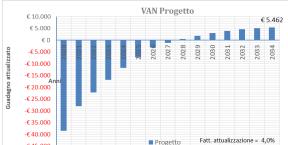


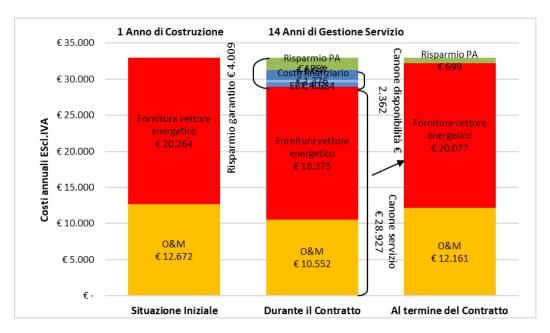
Utile lordo della ESCO	%САРЕХ	0,21
Costo Contrattuale ESCO €/anno IVA escl.	C _{ESCO}	583,88
Costi FTT €/anno IVA escl.	С _{РТТ}	401,83
Costi CAPEX €/anno IVA escl.	C _{CAPEX}	1.376,08
Canone O&M €/anno	CnM	10.552,44
Canone Energia €/anno	CnE	18.374,98
Canone Servizi €/anno IVA escl.	CnS	28.927,42
Canone Disponibilità €/anno IVA escl.	CnD	2.361,78
Canone Totale €/anno IVA escl.	Cn	31.289,20
Aliquota IVA %	IVA	0,22
Rimborso erariale IVA	R _{IVA}	6.721,06
Ricavi da Incentivi, esenti d'IVA	R_{B}	12.403,34
Durata Incentivi, anni	n _B	5,00
Inizio erogazione Incentivi, anno		2.022,00

Tabella 9.13 – Risultati dell'analisi di redditività e sostenibilità finanziaria della SCN1

INDICATORI DI REDDTIVITA DEL PROGETTO PRE-IMPOSTE		
Tempo di Ritorno Semplice, Spb = Io / FC, Anni	T.R.S.	6,73
Tempo di Ritorno Attualizzato T.R.A., anni	T.R.A.	8,71
Valore Attuale Netto, VAN = VA - Io	VAN > 0	5.461,52
Tasso interno di rendimento del progetto	TIR > WACC	0,07
Indice di Profitto	IP	0,15
INDICATORI DI REDDTIVITA DELLA ESCO PRE-IMPOSTE		
Tempo di Ritorno Semplice, Spb = Io / FC, Anni	T.R.S.	2,39
Tempo di Ritorno Attualizzato T.R.A., anni	T.R.A.	2,76
Valore Attuale Netto, VAN = VA - Io	VAN > 0	4.415,22
Tasso interno di rendimento dell'azionista	TIR > ke	0,37
Debit Service Cover Ratio	DSCR < 1,3	1,21
Loan Life Cover Ratio	LLCR > 1	1,05
Indice di Profitto Azionista	IP	0,12

Figura 9.10 – SCN1: Flussi di cassa del progetto




Figura 9.11 - SCN1: Flussi di cassa dell'azionista

Dall'analisi effettuata è emerso che lo scenario di interventi risulta conveniente economicamente per entrambi i soggetti, PA ed ESCO.

Infine si è provveduto all'identificazione del possibile canone applicabile nel caso di attuazione dello scenario ottimale con incentivi attraverso la partecipazione di ESCO secondo lo schema di EPC descritto in Figura 9.12.

Figura 9.12 – SCN1: Flussi di cassa dell'azionista

9.3.2 Scenario 2: EEM1+EEM2+EEM3

La realizzazione dello scenario 2 consiste nella combinazione delle EEM di seguito elencate:

- EEM1: installazione di termovalvole
- EEM2: sostituzione corpi illuminanti
- EEM 3: cappotto termico

Tabella 9.14 – Combinazione di EEM proposta per lo scenario 2

VOCE INVESTIMENTO	TOTALE (IVA ESCLUSA)	IVA AI 22%	TOTALE (IVA INCLUSA)
	[€]	[€]	[€]
EEM1 Fornitura & Posa EEM2 Fornitura & Posa	23.062 4.667	5.074 1.027	28.136 5.694

EEM3 Fornitura & Posa	138.474	30.464	168.938
Costi per la sicurezza	4986,09	1096,94	6083,03
Costi per la progettazione	11682,64	2570,18	14252,82
TOTALE (I ₀)	182.872	40.232	223.103
VOCE MANUTENZIONE	Смо	C _{MS}	См
VOCE IVIANOTENZIONE	(IVA INCLUSA)	(IVA INCLUSA)	(IVA INCLUSA)
	[€]	[€]	[€]
EEM1 O&M	8.509,2	2.661,1	11.170,3
EEM2 O&M	9.510,3	2.661,1	12.171,4
EEM3 O&M	10.011	2.661,1	12.672
TOTALE (C _M)	8.008,6	2.661,1	10.669,7
NOCE INCENTIVO	DECODIZIONE	TOTALE	
VOCE INCENTIVO	DESCRIZIONE	(IVA INCLUSA)	
		[€]	
Incentivi	[Conto termico]	67.363,34	
Durata incentivi		5,0	
Incentivo annuo		13472,7	

A seguito della modellazione dei due scenari ottimali è stato possibile rappresentare I risultati del bilancio energetico termico nella forma di diagramma di sankey relativo alle situazioni post-intervento.

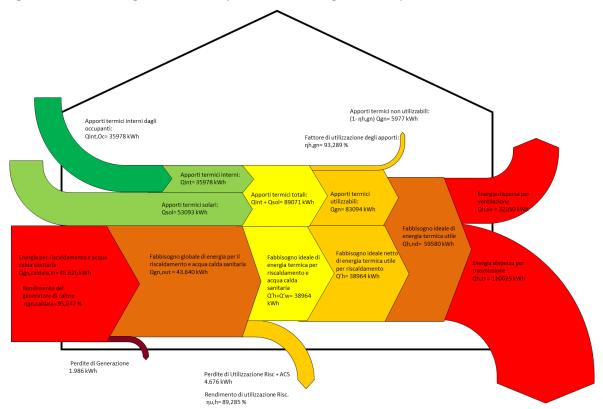


Figura 9.13 – SCN2: Diagramma di Sankey relativo al fabbisogno termico post intervento

Dall'analisi dei diagrammi di Sankey relativo al fabbisogno termico dell'edificio post intervento è possibile notare che il contributo relativo all'energia dispersa per trasmissione è notevolmente diminuito, insieme al fabbisogno globale di energia per il riscaldamento.

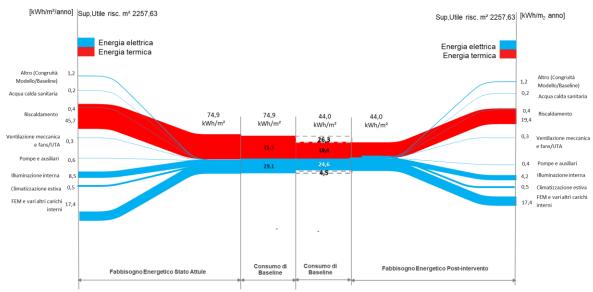
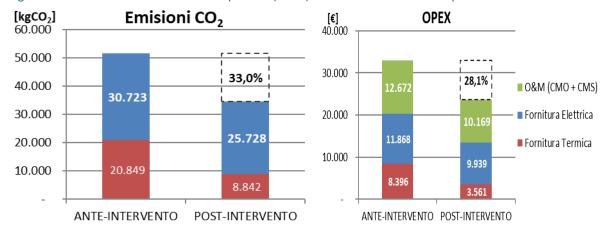


Figura 9.14 – SCN2: Bilancio energetico complessivo dell'edificio post intervento

I miglioramenti ottenibili tramite l'attuazione dello Scenario 1 sono riportati nella Tabella 9.10 e nella Figura 9.9


Tabella 9.15 – Risultati analisi SCN2 – EEM1+EEM2+EMM3

CALCOLO RISPARMIO	U.M.	ANTE-INTERVENTO	POST-INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Rendimento di regolazione]	[%]	76,03%	99,00%	58,6%
EM2 [Potenza corpi illuminanti]	[W]	116	48	-30,2%
EM2 [Potenza corpi illuminanti]	[W/mqK]	1,7	0,26	84,7%
Q _{teorico}	[kWh]	107.589	45.626	57,6%
EE _{teorico}	[kWh]	63.035	52.787	16,3%
Qbaseline	[kWh]	103.215	43.771	57,6%
EEBaseline	[kWh]	65.787	55.092	16,3%
Emiss. CO2 Termico	[kgCO ₂]	20.849	8.842	57,6%
Emiss. CO2 Elettrico	[kgCO ₂]	30.723	25.728	16,3%
Emiss. CO2 TOT	[kgCO ₂]	51.572	34.570	33,0%
Fornitura Termica, C _Q	[€]	8.396	3.561	57,6%
Fornitura Elettrica, C _{EE}	[€]	11.868	9.939	16,3%
Fornitura Energia, C _E	[€]	20.264	13.499	33,4%
Смо	[€]	10.011	7.508	25,0%
C _{MS}	[€]	2.661	2.661	0,0%
O&M (C _{MO} + C _{MS})	[€]	12.672	10.169	19,8%

ОРЕХ	[€]	32.936	23.669	28,1%
Classe energetica	[-]	D	В	2 classi

Figura 9.15 – SCN2: Riduzione dei costi operativi (OPEX) e delle emissioni di CO₂ a partire dalla baseline

E' stato quindi possibile presentare un modello semplificato di Piano Economico Finanziario (PEF) indicativo, i cui calcoli di dettaglio sono riportati all'Allegato L – Piano Economico Finanziario scenari. I risultati dell'analisi sono riportati nella e nelle successive figure.

Tabella 9.16 – Parametri finanziari dell'analisi di redditività dello SCN2- EEM1+EEM2+EEM3

PARAMETRI FINANZIARI		
Anni Costruzione	n _i	1,00
Anni Gestione Servizio	ns	24,00
Anni Concessione	n	25,00
Anno inizio Concessione	n ₀	2.020,00
Anni dell'ammortamento	n _A	10,00
Saggio Cassa Deposito e Prestiti	k cdP	0,02
Costo Capitale Azienda	WACC	0,04
kprogetto = Max(WACC; kCdP)	k _{pogetto}	0,04
Inflazione ISTAT	f	0,01
deriva dell'inflazione	f'	0,01
%, interessi debito	k _D	0,04
%, interessi equity	k e	0,09
Aliquota IRES	IRES	0,24
Aliquota IRAP	IRAP	0,04
Aliquota fiscale	τ	0,28
Anni debito (finanziamento)	n _D	9,00
Anni Equity	n _E	24,00
Costi d'Investimento diretti, IVA incl.	l _o	223.103,32
Oneri Finanziari (costi indiretti)	%Of	0,03
Costi d'Investimento indiretti, IVA incl.	Of	6.693,10
Costi d'Investimento (diretti+Indiretti) , IVA incl.	CAPEX	229.796,42
%CAPEX a Debito	D	0,80
%CAPEX a Equity	E	0,20
Debito	I _D	183.837,14
Equity	lε	45.959,28

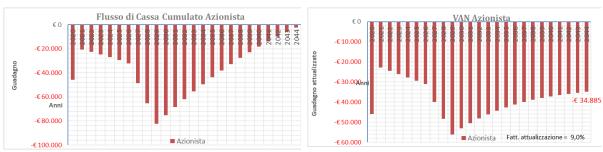
Fattore di annualità Debito	FA _D	7,61
Rata annua debito	q _D	24.167,96
Costo finanziamento,(D+INT _D)	$q_{\scriptscriptstyle D}{}^*n_{\scriptscriptstyle D}$	217.511,67
Costi per interessi debito, INT _D	$INT_D=q_D*n_D-D$	33.674,53

Tabella 9.17 – Parametri Economici dell'analisi di redditività dello SCN2

PARAMETRI ECONOMICI		
Costo annuo energia pre-intervento, IVA escl.	C _{EO}	20.264,00
Costo annuo O&M pre-intervento, IVA escl.	Смо	12.672,00
Spesa PA pre-intervento (Baseline)	C _{Baseline}	32.936,00
Altri costi di gestione ESCo post-intervento, IVA escl.	C _{Altro}	0,00
Riduzione% costi fornitura Energia	% ΔC _E	0,33
Riduzione% costi O&M	% ∆С м	0,20
Obiettivo riduzione spesa PA	%C _{Baseline}	0,00
Risparmio annuo PA garantito	45,6%	6.386,35
Risparmio annuo PA immediato durante la gestione	Risp.IM	0,00
Risparmio PA durante la concessione	14%	127.831,48
Risparmio annuo PA al termine della concessione	Risp.Term.	12.511,42
N° di Canoni annuali	anni	24,00
Utile lordo della ESCO	%CAPEX	-0,01
Costo Contrattuale ESCO €/anno IVA escl.	C _{ESCO}	-108,47
Costi FTT €/anno IVA escl.	C _{FTT}	1.403,11
Costi CAPEX €/anno IVA escl.	CCAPEX	5.091,72
Canone O&M €/anno	CnM	10.823,16
Canone Energia €/anno	CnE	15.726,49
Canone Servizi €/anno IVA escl.	CnS	26.549,65
Canone Disponibilità €/anno IVA escl.	CnD	6.386,35
Canone Totale €/anno IVA escl.	Cn	32.936,00
Aliquota IVA %	IVA	0,22
Rimborso erariale IVA	R _{IVA}	40.231,75
Ricavi da Incentivi, esenti d'IVA	R _B	67.363,34
Durata Incentivi, anni	n _B	5,00
Inizio erogazione Incentivi, anno		2.022,00

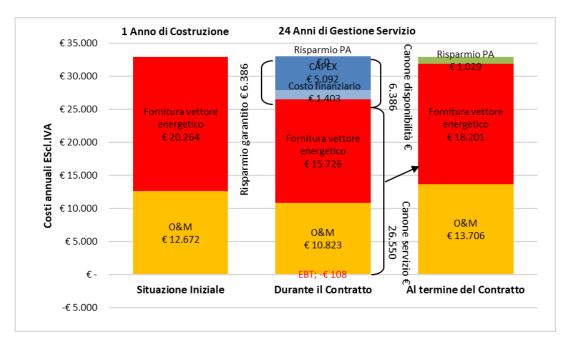
Tabella 9.18 – Risultati dell'analisi di redditività e sostenibilità finanziaria della SCN2

INDICATORI DI REDDTIVITA DEL PROGETTO PRE-IMPOSTE		
Tempo di Ritorno Semplice, Spb = Io / FC, Anni	T.R.S.	17,81
Tempo di Ritorno Attualizzato T.R.A., anni	T.R.A.	46,45
Valore Attuale Netto, VAN = VA - Io	VAN > 0	-29.265,29
Tasso interno di rendimento del progetto	TIR > WACC	0,02
Indice di Profitto	IP	-0,13
INDICATORI DI REDDTIVITA DELLA ESCO PRE-IMPOSTE		
Tempo di Ritorno Semplice, Spb = Io / FC, Anni	T.R.S.	25,74
Tempo di Ritorno Attualizzato T.R.A., anni	T.R.A.	103,93
Valore Attuale Netto, VAN = VA - Io	VAN > 0	-34.885,19
Tasso interno di rendimento dell'azionista	TIR > ke	0,00
Debit Service Cover Ratio	DSCR < 1,3	0,84



Loan Life Cover Ratio	LLCR > 1	1,06
Indice di Profitto Azionista	IP	-0,16

Figura 9.16 - SCN2: Flussi di cassa del progetto


Figura 9.17 – SCN1: Flussi di cassa dell'azionista

Dall'analisi effettuata è emerso che lo scenario di interventi risulta conveniente economicamente non conveniente per entrambi i soggetti, PA ed ESCO.

Infine si è provveduto all'identificazione del possibile canone applicabile nel caso di attuazione dello scenario ottimale con incentivi attraverso la partecipazione di ESCO secondo lo schema di EPC descritto in Figura 9.12.

Figura 9.18 – SCN2: Flussi di cassa dell'azionista

10 CONCLUSIONI

10.1 RIASSUNTO DEGLI INDICI DI PERFORMANCE ENERGETICA

Dalle analisi e dai sopralluoghi effettuati presso la *Scuola elementare "Carducci"* è risultato che l'edificio, grazie ai recenti interventi di ristrutturazione impiantistica, presenta livelli sufficienti di performance energetica, la sostituzione della vecchia caldaia con una a condensazione ha infatti permesso di contenere i consumi di combustibile.

La situazione è invece differente per quanto riguarda gli indici di performance relativi al consumo di energia elettrica, che sono risultati essere insufficienti. A questo proposito, l'intervento di sostituzione dei corpi illuminanti con lampade a led, risulta prioritario al fine di ridurre il consumo elettrico eccessivo.

10.2 RIASSUNTO DEGLI SCENARI DI INVESTIMENTO E DEI PRINCIPALI RISULTATI

Considerando che l'edificio è sottoposto a vincolo architettonico ai sensi dell'Art. 12 del Dlgs 42/2004, gli interventi di efficientamento previsti per la struttura che interessano l'involucro edilizio possono essere effettuati previo parere della a Soprintendenza per i beni architettonici e paesaggistici . I serramenti delle componenti finestrate risultano in buone condizione con tipologie costruttive efficienti dal punto di vista termico come il PVC e il legno e l'utilizzo di vetri doppi.

10.3 CONCLUSIONI E COMMENTI

La scuola è risultata essere, dal punto di vista impiantistico, in un ottimo stato manutentivo data la recente sostituzione dei componenti della centrale termica.

Per quanto concerne l'involucro gli standard prestazionali sono decisamente inferiori, con soluzioni costruttive che limitano gli interventi di efficientamento adottabili (muratura esterna portante) ed elementi obsoleti con bassi livelli di isolamento termico.

Come detto, si sono analizzati due possibili soluzione di efficientamento, sull'impianto di regolazione e sull'impianto di illuminazione e sull'involucro, attraverso l'isolamento delle pareti verticali.

Tuttavia lo scenario 1, risulta conveniente da un punto di vista economico e dal punto di vista della sostenibilità finanziaria sia per la PA che per la ESCO con tempi di ritorno inferiori ai 10 anni. Mentre risulta non conveniente lo scenario che prevede interventi sull'involucro con tempi di ritorno superiori ai 50 anni

ALLEGATO A – ELENCO DOCUMENTAZIONE FORNITA DALLA COMMITTENZA

	Titolo	Data	Nome file
Planimetrie Involucro	TAVOLA DI INQUADRAMENTO	26/11/2017	E00829.dwg
Planimetrie Involucro	TAVOLA PIANO PRIMO EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIAN1.dwg
Planimetrie Involucro	TAVOLA PIANO SOTTO STRADA EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIAN1SS.dwg
Planimetrie Involucro	TAVOLA PIANO SECONDO EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIAN2.dwg
Planimetrie Involucro	TAVOLA PIANO PRIMO AMMEZZATO EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIAN1A.dwg
Planimetrie Involucro	TAVOLA PIANO SECONDO AMMEZZATO EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIAN2A.dwg
Planimetrie Involucro	TAVOLA PIANO COPERTURA EDIFICIO SCOLASTICO/SOCIALE	26/11/2017	PIANC.dwg
Planimetrie Involucro	TAVOLA PIANO TERRA EDIFICIO SCOLASTICO / SOCIALE	26/11/2017	PIANT.dwg
Planimetrie Termici	CENSIMENTO – CENTRALE TERMICA	26/11/2017	053-S01-001-CENTRALE TERMICA.dwg
Planimetrie Termici	CENSIMENTO – CALDAIA MURALE	26/11/2017	053-P03-025-CALDAIA MURALE.dwg
Planimetrie Termici	CENSIMENTO – PIANO 00	26/11/2017	L1-042-053-P00.dwg
Planimetrie Termici	CENSIMENTO – PIANO 01	26/11/2017	L1-042-053-P01.dwg
Planimetrie Termici	CENSIMENTO – PIANO 02	26/11/2017	L1-042-053-P02.dwg
Planimetrie Termici	CENSIMENTO – PIANO 02a	26/11/2017	L1-042-392-P02.dwg
Planimetrie Termici	CENSIMENTO – PIANO 03	26/11/2017	L1-042-053-P03.dwg
Planimetrie Termici	CENSIMENTO – PIANO SOTTO STRADA	26/11/2017	L1-042-053-S01.dwg
Checklist Terrmici	L1-042-053-P00-Checklist	26/11/2017	L1-042-053-P00-Checklist.xlsx
Checklist Terrmici	L1-042-053-P01-Checklist	26/11/2017	L1-042-053-P01-Checklist.xlsx
Checklist Terrmici	L1-042-053-P02-Checklist	26/11/2017	L1-042-053-P02-Checklist.xlsx
Checklist Terrmici	L1-042-053-P03-Checklist	26/11/2017	L1-042-053-P03-Checklist.xlsx
Checklist Terrmici	L1-042-392 - Checklist	26/11/2017	L1-042-392-Checklist.xlsx
Checklist Terrmici	L1-042-392 – Scheda sopralluogo	26/11/2017	L1-042-392 – Scheda sopralluogo.xlsx
Checklist Terrmici	L1-042-053-S01-Checklist	26/11/2017	L1-042-053-S01-Checklist.xlsx
Bollette EE	POD:IT001E00096317 Fattura dal 01-10-13 al 31-01-14	08/11/2017	5700065495
Bollette EE	POD:IT001E00096317 Fattura dal 01-01-14 al 28-02-14	08/11/2017	5700098218
Bollette EE	POD:IT001E00096317 Fattura dal 01-02-14 al 31-03-14	08/11/2017	5700134957
Bollette EE	POD:IT001E00096317 Fattura dal 01-03-14 al 30-04-14	08/11/2017	5700176145
Bollette EE	POD:IT001E00096317 Fattura dal 01-04-14 al 30-04-14	08/11/2017	5700214975
Bollette EE	POD:IT001E00096317 Fattura dal 01-06-14 al 30-06-14	08/11/2017	5700248944
Bollette EE	POD:IT001E00096317 Fattura dal 01-08-14 al 31-08-14	08/11/2017	5700291206
Bollette EE	POD:IT001E00096317 Fattura dal 01-08-14 al 30-09-14	08/11/2017	5700345541
Bollette EE	POD:IT001E00096317 Fattura dal 01-09-14 al 30-11-14	08/11/2017	5700411327
Bollette EE	POD:IT001E00096317 Fattura dal 01-10-14 al 31-10-14	08/11/2017	5700373449
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-14 al 30-11-14	08/11/2017	5700493139
Bollette EE	POD:IT001E00096317 Fattura dal 01-01-15 al 31-01-15	08/11/2017	5700493139
Bollette EE	POD:IT001E00096317 Fattura dal 01-02-15 al 28-02-15	08/11/2017	5700544142
Bollette EE	POD:IT001E00096317 Fattura dal 01-03-15 al 31-03-15	08/11/2017	5750081967
Bollette EE	POD:IT001E00096317 Fattura dal 01-04-15 al 30-04-15	08/11/2017	E000140844
Bollette EE	POD:IT001E00096317 Fattura dal 01-05-15 al 31-05-15	08/11/2017	E000175672
Bollette EE	POD:IT001E00096317 Fattura dal 01-06-15 al 30-06-15	08/11/2017	E000234065
Bollette EE	POD:IT001E00096317 Fattura dal 01-07-15 al 31-07-15	08/11/2017	E000281520
Bollette EE	POD:IT001E00096317 Fattura dal 01-07-15 al 31-07-15	08/11/2017	E000337522
Bollette EE	POD:IT001E00096317 Fattura dal 01-08-15 al 31-08-15	08/11/2017	E000386676
Bollette EE	POD:IT001E00096317 Fattura dal 01-09-15 al 30-09-15	08/11/2017	E000386676
Bollette EE	POD:IT001E00096317 Fattura dal 01-10-15 al 30-10-15	08/11/2017	E000432863
Bollette EE	POD:IT001E00096317 Fattura dal 01-10-15 al 31-10-15	08/11/2017	E000483582
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	E000018557
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	E000084136
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	E000334604
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640011738
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640025275

E0829 - Scuola elementare "Carducci"

	Titolo	Data	Nome file
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640048519
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640060830
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640074903
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640126636
Bollette EE	POD:IT001E00096317 Fattura dal 01-11-15 al 30-11-15	08/11/2017	011640100078
Bollette GAS	PDR: 03270009562239 Fattura dal 01-01-15 al 31-03-15	08/11/2017	0100032015000155600
Bollette GAS	PDR: 03270009562239 Fattura dal 01-04-15 al 30-06-15	08/11/2017	P150007518
Bollette GAS	PDR: 03270009562239 Fattura dal 01-07-15 al 31-07-15	08/11/2017	P150015576
Bollette GAS	PDR: 03270009562239 Fattura dal 01-08-15 al 31-08-15	08/11/2017	P150019771
Bollette GAS	PDR: 03270009562239 Fattura dal 01-09-15 al 30-09-15	08/11/2017	P150032667
Bollette GAS	PDR: 03270009562239 Fattura dal 01-10-15 al 31-10-15	08/11/2017	P150037967
Bollette GAS	PDR: 03270009562239 Fattura dal 01-11-15 al 30-11-15	08/11/2017	P150048624
Bollette GAS	PDR: 03270009562239 Fattura dal 01-12-15 al 31-12-15	08/11/2017	P160003881
Bollette GAS	PDR: 03270009562239 Fattura dal 01-01-16 al 31-01-16	08/11/2017	P160012671
Bollette GAS	PDR: 03270009562239 Fattura dal 01-02-16 al 29-02-16	08/11/2017	P160023980
Bollette GAS	PDR: 03270009562239 Fattura dal 01-03-16 al 31-03-16	08/11/2017	P160031417
Bollette GAS	PDR: 03270009562239 Fattura dal 01-04-16 al 30-04-16	08/11/2017	P160041242
Bollette GAS	PDR: 03270009562239 Fattura dal 01-05-16 al 31-05-16	08/11/2017	EX19107/2016
Bollette GAS	PDR: 03270009562239 Fattura dal 01-06-16 al 30-06-16	08/11/2017	EX22893/2016
Bollette GAS	PDR: 03270009562239 Fattura dal 01-12-16 al 31-12-16	08/11/2017	EX03011/2017

ALLEGATO B – ELABORATI

Titolo	Descrizione	Data	Nome file
Fotografie da sopralluogo	Fotografie da sopralluogo	06/2018	ALLEGATO B_Lotto.6 – E0829_Foto da 1 a 14
Contatori	Planimetria scala 1:100 - 1:200 con posizione impianti e contatori	07/2018	ALLEGATO B_Lotto.6 – E0876_Contatori
Zone termiche	Planimetria scala 1:100 - 1:200 con individuazione delle diverse zone termiche, degli spazi riscaldati e non riscaldati e delle diverse destinazioni d'uso	07/2018	ALLEGATO B_Lotto.6 – E0876_ZoneTermiche
Impianto Elettrico	Diagramma a blocchi impianto elettrico conforme allo stato di fatto	07/2018	ALLEGATO B_Lotto.6 – E0876_Impianto Elettrico
Impianto termico	Diagramma a blocchi impianto termico conforme allo stato di fatto	07/2018	ALLEGATO B_Lotto.6 – E0876_ImpiantoTermico
Calcolo Elettrico	Dettaglio di calcolo del modello elettrico	07/2018	ALLEGATO B_Lotto.6 – E0876_CalcoloElettrico

ALLEGATO C – REPORT DI INDAGINE TERMOGRAFICA

Titolo	Data	Nome file
Report di indagine termografica	06/2018	ALLEGATO C_Lotto.6 – E0829
·	-	
•	-	
	-	

ALLEGATO D – REPORT RELATIVI AD ALTRE PROVE DIAGNOSTICHE STRUMENTALI

Titolo	Data	Nome file
Report relativi ad altre prove diagnostiche strumentali	06/2018	ALLEGATO D_Lotto.6 – E0829

ALLEGATO E – RELAZIONE DI DETTAGLIO DEI CALCOLI

Titolo	Data	Nome file
Relazione di dettaglio dei calcoli	06/2018	ALLEGATO E_Lotto.6 – E0829
	-	
	-	
<u> </u>	-	

ALLEGATO F – CERTIFICATO CTI SOFTWARE

Titolo	Data	Nome file
Certificato CTI software	06/2018	ALLEGATO F_Lotto.6 – E0829

ALLEGATO G – ATTESTATO DI PRESTAZIONE ENERGETICA

Titolo	Data	Nome file
Attestato di prestazione energetica	06/2018	ALLEGATO G_Lotto.6 – E0829
	-	
·	-	
	-	

ALLEGATO H – BOZZA DI APE SCENARI

Titolo	Data	Nome file
Bozza di APE scenari	06/2018	ALLEGATO H_Lotto.6 – E0829
	-	
	-	
	-	

ALLEGATO I – DATI CLIMATICI

Titolo	Data	Nome file
Dati climatici	06/2018	GG_Lotto6-E0829
-	-	
	-	

ALLEGATO J – SCHEDE DI AUDIT

Titolo	Data	Nome file
Schede di audit	06/2018	Lotto.6-E0829_Schede-Audit
	-	

ALLEGATO K – SCHEDE ORE

Titolo	Data	Nome file
Schede ORE	06/2018	ALLEGATO K_Lotto.6 – E0829
	-	
	-	
		

ALLEGATO L – PIANO ECONOMICO FINANZIARIO SCENARI

Titolo	Data	Nome file
Piano economico finanziario scenari	06/2018	Lotto.6-E0829_analisi-PEF
Tidilo cconomico intanziario scenari	00/2010	20110.10 20023_41141131 1 21

ALLEGATO M – REPORT DI BENCHMARK

Data	Nome file
06/2018	ALLEGATO M_Lotto.6 – E0829
-	
-	-
-	

ALLEGATO N - CD-ROM

[Allegare CD-ROM o altro supporto di archiviazione digitale contenente tutta la documentazione relativa al Rapporto di Diagnosi Energetica e suoi allegati, in formato WORD, EXCEL e PDF con firma digitale certificata per gli elaborati documentali e formato DWG compatibile con i più diffusi software CAD per gli elaborati grafici.]

Titolo Rapporto Pag. O-A